mirror of
https://github.com/tildearrow/furnace.git
synced 2024-11-10 23:05:05 +00:00
54e93db207
not reliable yet
524 lines
14 KiB
C
524 lines
14 KiB
C
/*
|
|
* Copyright (c) 2003, 2007-14 Matteo Frigo
|
|
* Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
|
*
|
|
*/
|
|
|
|
/* This file was automatically generated --- DO NOT EDIT */
|
|
/* Generated on Tue Sep 14 10:44:41 EDT 2021 */
|
|
|
|
#include "dft/codelet-dft.h"
|
|
|
|
#if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
|
|
|
|
/* Generated by: ../../../genfft/gen_twidsq.native -fma -compact -variables 4 -pipeline-latency 4 -reload-twiddle -dif -n 4 -name q1_4 -include dft/scalar/q.h */
|
|
|
|
/*
|
|
* This function contains 88 FP additions, 48 FP multiplications,
|
|
* (or, 64 additions, 24 multiplications, 24 fused multiply/add),
|
|
* 51 stack variables, 0 constants, and 64 memory accesses
|
|
*/
|
|
#include "dft/scalar/q.h"
|
|
|
|
static void q1_4(R *rio, R *iio, const R *W, stride rs, stride vs, INT mb, INT me, INT ms)
|
|
{
|
|
{
|
|
INT m;
|
|
for (m = mb, W = W + (mb * 6); m < me; m = m + 1, rio = rio + ms, iio = iio + ms, W = W + 6, MAKE_VOLATILE_STRIDE(8, rs), MAKE_VOLATILE_STRIDE(0, vs)) {
|
|
E T3, Tv, Tw, T6, Tc, Tf, Tx, Ts, Tm, Ti, T1H, T29, T2a, T1K, T1Q;
|
|
E T1T, T2b, T26, T20, T1W, TB, T13, T14, TE, TK, TN, T15, T10, TU, TQ;
|
|
E T19, T1B, T1C, T1c, T1i, T1l, T1D, T1y, T1s, T1o;
|
|
{
|
|
E T1, T2, Tb, Tg, Th, T8;
|
|
{
|
|
E T9, Ta, T4, T5;
|
|
T1 = rio[0];
|
|
T2 = rio[WS(rs, 2)];
|
|
T3 = T1 + T2;
|
|
T9 = iio[0];
|
|
Ta = iio[WS(rs, 2)];
|
|
Tb = T9 - Ta;
|
|
Tv = T9 + Ta;
|
|
Tg = iio[WS(rs, 1)];
|
|
Th = iio[WS(rs, 3)];
|
|
Tw = Tg + Th;
|
|
T4 = rio[WS(rs, 1)];
|
|
T5 = rio[WS(rs, 3)];
|
|
T6 = T4 + T5;
|
|
T8 = T4 - T5;
|
|
}
|
|
Tc = T8 + Tb;
|
|
Tf = T1 - T2;
|
|
Tx = Tv - Tw;
|
|
Ts = T3 - T6;
|
|
Tm = Tb - T8;
|
|
Ti = Tg - Th;
|
|
}
|
|
{
|
|
E T1F, T1G, T1P, T1U, T1V, T1M;
|
|
{
|
|
E T1N, T1O, T1I, T1J;
|
|
T1F = rio[WS(vs, 3)];
|
|
T1G = rio[WS(vs, 3) + WS(rs, 2)];
|
|
T1H = T1F + T1G;
|
|
T1N = iio[WS(vs, 3)];
|
|
T1O = iio[WS(vs, 3) + WS(rs, 2)];
|
|
T1P = T1N - T1O;
|
|
T29 = T1N + T1O;
|
|
T1U = iio[WS(vs, 3) + WS(rs, 1)];
|
|
T1V = iio[WS(vs, 3) + WS(rs, 3)];
|
|
T2a = T1U + T1V;
|
|
T1I = rio[WS(vs, 3) + WS(rs, 1)];
|
|
T1J = rio[WS(vs, 3) + WS(rs, 3)];
|
|
T1K = T1I + T1J;
|
|
T1M = T1I - T1J;
|
|
}
|
|
T1Q = T1M + T1P;
|
|
T1T = T1F - T1G;
|
|
T2b = T29 - T2a;
|
|
T26 = T1H - T1K;
|
|
T20 = T1P - T1M;
|
|
T1W = T1U - T1V;
|
|
}
|
|
{
|
|
E Tz, TA, TJ, TO, TP, TG;
|
|
{
|
|
E TH, TI, TC, TD;
|
|
Tz = rio[WS(vs, 1)];
|
|
TA = rio[WS(vs, 1) + WS(rs, 2)];
|
|
TB = Tz + TA;
|
|
TH = iio[WS(vs, 1)];
|
|
TI = iio[WS(vs, 1) + WS(rs, 2)];
|
|
TJ = TH - TI;
|
|
T13 = TH + TI;
|
|
TO = iio[WS(vs, 1) + WS(rs, 1)];
|
|
TP = iio[WS(vs, 1) + WS(rs, 3)];
|
|
T14 = TO + TP;
|
|
TC = rio[WS(vs, 1) + WS(rs, 1)];
|
|
TD = rio[WS(vs, 1) + WS(rs, 3)];
|
|
TE = TC + TD;
|
|
TG = TC - TD;
|
|
}
|
|
TK = TG + TJ;
|
|
TN = Tz - TA;
|
|
T15 = T13 - T14;
|
|
T10 = TB - TE;
|
|
TU = TJ - TG;
|
|
TQ = TO - TP;
|
|
}
|
|
{
|
|
E T17, T18, T1h, T1m, T1n, T1e;
|
|
{
|
|
E T1f, T1g, T1a, T1b;
|
|
T17 = rio[WS(vs, 2)];
|
|
T18 = rio[WS(vs, 2) + WS(rs, 2)];
|
|
T19 = T17 + T18;
|
|
T1f = iio[WS(vs, 2)];
|
|
T1g = iio[WS(vs, 2) + WS(rs, 2)];
|
|
T1h = T1f - T1g;
|
|
T1B = T1f + T1g;
|
|
T1m = iio[WS(vs, 2) + WS(rs, 1)];
|
|
T1n = iio[WS(vs, 2) + WS(rs, 3)];
|
|
T1C = T1m + T1n;
|
|
T1a = rio[WS(vs, 2) + WS(rs, 1)];
|
|
T1b = rio[WS(vs, 2) + WS(rs, 3)];
|
|
T1c = T1a + T1b;
|
|
T1e = T1a - T1b;
|
|
}
|
|
T1i = T1e + T1h;
|
|
T1l = T17 - T18;
|
|
T1D = T1B - T1C;
|
|
T1y = T19 - T1c;
|
|
T1s = T1h - T1e;
|
|
T1o = T1m - T1n;
|
|
}
|
|
rio[0] = T3 + T6;
|
|
iio[0] = Tv + Tw;
|
|
rio[WS(rs, 1)] = TB + TE;
|
|
iio[WS(rs, 1)] = T13 + T14;
|
|
rio[WS(rs, 2)] = T19 + T1c;
|
|
iio[WS(rs, 2)] = T1B + T1C;
|
|
iio[WS(rs, 3)] = T29 + T2a;
|
|
rio[WS(rs, 3)] = T1H + T1K;
|
|
{
|
|
E Tt, Ty, Tr, Tu;
|
|
Tr = W[2];
|
|
Tt = Tr * Ts;
|
|
Ty = Tr * Tx;
|
|
Tu = W[3];
|
|
rio[WS(vs, 2)] = FMA(Tu, Tx, Tt);
|
|
iio[WS(vs, 2)] = FNMS(Tu, Ts, Ty);
|
|
}
|
|
{
|
|
E T27, T2c, T25, T28;
|
|
T25 = W[2];
|
|
T27 = T25 * T26;
|
|
T2c = T25 * T2b;
|
|
T28 = W[3];
|
|
rio[WS(vs, 2) + WS(rs, 3)] = FMA(T28, T2b, T27);
|
|
iio[WS(vs, 2) + WS(rs, 3)] = FNMS(T28, T26, T2c);
|
|
}
|
|
{
|
|
E T11, T16, TZ, T12;
|
|
TZ = W[2];
|
|
T11 = TZ * T10;
|
|
T16 = TZ * T15;
|
|
T12 = W[3];
|
|
rio[WS(vs, 2) + WS(rs, 1)] = FMA(T12, T15, T11);
|
|
iio[WS(vs, 2) + WS(rs, 1)] = FNMS(T12, T10, T16);
|
|
}
|
|
{
|
|
E T1z, T1E, T1x, T1A;
|
|
T1x = W[2];
|
|
T1z = T1x * T1y;
|
|
T1E = T1x * T1D;
|
|
T1A = W[3];
|
|
rio[WS(vs, 2) + WS(rs, 2)] = FMA(T1A, T1D, T1z);
|
|
iio[WS(vs, 2) + WS(rs, 2)] = FNMS(T1A, T1y, T1E);
|
|
}
|
|
{
|
|
E Tj, Te, Tk, T7, Td;
|
|
Tj = Tf - Ti;
|
|
Te = W[5];
|
|
Tk = Te * Tc;
|
|
T7 = W[4];
|
|
Td = T7 * Tc;
|
|
iio[WS(vs, 3)] = FNMS(Te, Tj, Td);
|
|
rio[WS(vs, 3)] = FMA(T7, Tj, Tk);
|
|
}
|
|
{
|
|
E T1p, T1k, T1q, T1d, T1j;
|
|
T1p = T1l - T1o;
|
|
T1k = W[5];
|
|
T1q = T1k * T1i;
|
|
T1d = W[4];
|
|
T1j = T1d * T1i;
|
|
iio[WS(vs, 3) + WS(rs, 2)] = FNMS(T1k, T1p, T1j);
|
|
rio[WS(vs, 3) + WS(rs, 2)] = FMA(T1d, T1p, T1q);
|
|
}
|
|
{
|
|
E T23, T22, T24, T1Z, T21;
|
|
T23 = T1T + T1W;
|
|
T22 = W[1];
|
|
T24 = T22 * T20;
|
|
T1Z = W[0];
|
|
T21 = T1Z * T20;
|
|
iio[WS(vs, 1) + WS(rs, 3)] = FNMS(T22, T23, T21);
|
|
rio[WS(vs, 1) + WS(rs, 3)] = FMA(T1Z, T23, T24);
|
|
}
|
|
{
|
|
E TX, TW, TY, TT, TV;
|
|
TX = TN + TQ;
|
|
TW = W[1];
|
|
TY = TW * TU;
|
|
TT = W[0];
|
|
TV = TT * TU;
|
|
iio[WS(vs, 1) + WS(rs, 1)] = FNMS(TW, TX, TV);
|
|
rio[WS(vs, 1) + WS(rs, 1)] = FMA(TT, TX, TY);
|
|
}
|
|
{
|
|
E TR, TM, TS, TF, TL;
|
|
TR = TN - TQ;
|
|
TM = W[5];
|
|
TS = TM * TK;
|
|
TF = W[4];
|
|
TL = TF * TK;
|
|
iio[WS(vs, 3) + WS(rs, 1)] = FNMS(TM, TR, TL);
|
|
rio[WS(vs, 3) + WS(rs, 1)] = FMA(TF, TR, TS);
|
|
}
|
|
{
|
|
E Tp, To, Tq, Tl, Tn;
|
|
Tp = Tf + Ti;
|
|
To = W[1];
|
|
Tq = To * Tm;
|
|
Tl = W[0];
|
|
Tn = Tl * Tm;
|
|
iio[WS(vs, 1)] = FNMS(To, Tp, Tn);
|
|
rio[WS(vs, 1)] = FMA(Tl, Tp, Tq);
|
|
}
|
|
{
|
|
E T1v, T1u, T1w, T1r, T1t;
|
|
T1v = T1l + T1o;
|
|
T1u = W[1];
|
|
T1w = T1u * T1s;
|
|
T1r = W[0];
|
|
T1t = T1r * T1s;
|
|
iio[WS(vs, 1) + WS(rs, 2)] = FNMS(T1u, T1v, T1t);
|
|
rio[WS(vs, 1) + WS(rs, 2)] = FMA(T1r, T1v, T1w);
|
|
}
|
|
{
|
|
E T1X, T1S, T1Y, T1L, T1R;
|
|
T1X = T1T - T1W;
|
|
T1S = W[5];
|
|
T1Y = T1S * T1Q;
|
|
T1L = W[4];
|
|
T1R = T1L * T1Q;
|
|
iio[WS(vs, 3) + WS(rs, 3)] = FNMS(T1S, T1X, T1R);
|
|
rio[WS(vs, 3) + WS(rs, 3)] = FMA(T1L, T1X, T1Y);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static const tw_instr twinstr[] = {
|
|
{ TW_FULL, 0, 4 },
|
|
{ TW_NEXT, 1, 0 }
|
|
};
|
|
|
|
static const ct_desc desc = { 4, "q1_4", twinstr, &GENUS, { 64, 24, 24, 0 }, 0, 0, 0 };
|
|
|
|
void X(codelet_q1_4) (planner *p) {
|
|
X(kdft_difsq_register) (p, q1_4, &desc);
|
|
}
|
|
#else
|
|
|
|
/* Generated by: ../../../genfft/gen_twidsq.native -compact -variables 4 -pipeline-latency 4 -reload-twiddle -dif -n 4 -name q1_4 -include dft/scalar/q.h */
|
|
|
|
/*
|
|
* This function contains 88 FP additions, 48 FP multiplications,
|
|
* (or, 64 additions, 24 multiplications, 24 fused multiply/add),
|
|
* 37 stack variables, 0 constants, and 64 memory accesses
|
|
*/
|
|
#include "dft/scalar/q.h"
|
|
|
|
static void q1_4(R *rio, R *iio, const R *W, stride rs, stride vs, INT mb, INT me, INT ms)
|
|
{
|
|
{
|
|
INT m;
|
|
for (m = mb, W = W + (mb * 6); m < me; m = m + 1, rio = rio + ms, iio = iio + ms, W = W + 6, MAKE_VOLATILE_STRIDE(8, rs), MAKE_VOLATILE_STRIDE(0, vs)) {
|
|
E T3, Te, Tb, Tq, T6, T8, Th, Tr, Tv, TG, TD, TS, Ty, TA, TJ;
|
|
E TT, TX, T18, T15, T1k, T10, T12, T1b, T1l, T1p, T1A, T1x, T1M, T1s, T1u;
|
|
E T1D, T1N;
|
|
{
|
|
E T1, T2, T9, Ta;
|
|
T1 = rio[0];
|
|
T2 = rio[WS(rs, 2)];
|
|
T3 = T1 + T2;
|
|
Te = T1 - T2;
|
|
T9 = iio[0];
|
|
Ta = iio[WS(rs, 2)];
|
|
Tb = T9 - Ta;
|
|
Tq = T9 + Ta;
|
|
}
|
|
{
|
|
E T4, T5, Tf, Tg;
|
|
T4 = rio[WS(rs, 1)];
|
|
T5 = rio[WS(rs, 3)];
|
|
T6 = T4 + T5;
|
|
T8 = T4 - T5;
|
|
Tf = iio[WS(rs, 1)];
|
|
Tg = iio[WS(rs, 3)];
|
|
Th = Tf - Tg;
|
|
Tr = Tf + Tg;
|
|
}
|
|
{
|
|
E Tt, Tu, TB, TC;
|
|
Tt = rio[WS(vs, 1)];
|
|
Tu = rio[WS(vs, 1) + WS(rs, 2)];
|
|
Tv = Tt + Tu;
|
|
TG = Tt - Tu;
|
|
TB = iio[WS(vs, 1)];
|
|
TC = iio[WS(vs, 1) + WS(rs, 2)];
|
|
TD = TB - TC;
|
|
TS = TB + TC;
|
|
}
|
|
{
|
|
E Tw, Tx, TH, TI;
|
|
Tw = rio[WS(vs, 1) + WS(rs, 1)];
|
|
Tx = rio[WS(vs, 1) + WS(rs, 3)];
|
|
Ty = Tw + Tx;
|
|
TA = Tw - Tx;
|
|
TH = iio[WS(vs, 1) + WS(rs, 1)];
|
|
TI = iio[WS(vs, 1) + WS(rs, 3)];
|
|
TJ = TH - TI;
|
|
TT = TH + TI;
|
|
}
|
|
{
|
|
E TV, TW, T13, T14;
|
|
TV = rio[WS(vs, 2)];
|
|
TW = rio[WS(vs, 2) + WS(rs, 2)];
|
|
TX = TV + TW;
|
|
T18 = TV - TW;
|
|
T13 = iio[WS(vs, 2)];
|
|
T14 = iio[WS(vs, 2) + WS(rs, 2)];
|
|
T15 = T13 - T14;
|
|
T1k = T13 + T14;
|
|
}
|
|
{
|
|
E TY, TZ, T19, T1a;
|
|
TY = rio[WS(vs, 2) + WS(rs, 1)];
|
|
TZ = rio[WS(vs, 2) + WS(rs, 3)];
|
|
T10 = TY + TZ;
|
|
T12 = TY - TZ;
|
|
T19 = iio[WS(vs, 2) + WS(rs, 1)];
|
|
T1a = iio[WS(vs, 2) + WS(rs, 3)];
|
|
T1b = T19 - T1a;
|
|
T1l = T19 + T1a;
|
|
}
|
|
{
|
|
E T1n, T1o, T1v, T1w;
|
|
T1n = rio[WS(vs, 3)];
|
|
T1o = rio[WS(vs, 3) + WS(rs, 2)];
|
|
T1p = T1n + T1o;
|
|
T1A = T1n - T1o;
|
|
T1v = iio[WS(vs, 3)];
|
|
T1w = iio[WS(vs, 3) + WS(rs, 2)];
|
|
T1x = T1v - T1w;
|
|
T1M = T1v + T1w;
|
|
}
|
|
{
|
|
E T1q, T1r, T1B, T1C;
|
|
T1q = rio[WS(vs, 3) + WS(rs, 1)];
|
|
T1r = rio[WS(vs, 3) + WS(rs, 3)];
|
|
T1s = T1q + T1r;
|
|
T1u = T1q - T1r;
|
|
T1B = iio[WS(vs, 3) + WS(rs, 1)];
|
|
T1C = iio[WS(vs, 3) + WS(rs, 3)];
|
|
T1D = T1B - T1C;
|
|
T1N = T1B + T1C;
|
|
}
|
|
rio[0] = T3 + T6;
|
|
iio[0] = Tq + Tr;
|
|
rio[WS(rs, 1)] = Tv + Ty;
|
|
iio[WS(rs, 1)] = TS + TT;
|
|
rio[WS(rs, 2)] = TX + T10;
|
|
iio[WS(rs, 2)] = T1k + T1l;
|
|
iio[WS(rs, 3)] = T1M + T1N;
|
|
rio[WS(rs, 3)] = T1p + T1s;
|
|
{
|
|
E Tc, Ti, T7, Td;
|
|
Tc = T8 + Tb;
|
|
Ti = Te - Th;
|
|
T7 = W[4];
|
|
Td = W[5];
|
|
iio[WS(vs, 3)] = FNMS(Td, Ti, T7 * Tc);
|
|
rio[WS(vs, 3)] = FMA(Td, Tc, T7 * Ti);
|
|
}
|
|
{
|
|
E T1K, T1O, T1J, T1L;
|
|
T1K = T1p - T1s;
|
|
T1O = T1M - T1N;
|
|
T1J = W[2];
|
|
T1L = W[3];
|
|
rio[WS(vs, 2) + WS(rs, 3)] = FMA(T1J, T1K, T1L * T1O);
|
|
iio[WS(vs, 2) + WS(rs, 3)] = FNMS(T1L, T1K, T1J * T1O);
|
|
}
|
|
{
|
|
E Tk, Tm, Tj, Tl;
|
|
Tk = Tb - T8;
|
|
Tm = Te + Th;
|
|
Tj = W[0];
|
|
Tl = W[1];
|
|
iio[WS(vs, 1)] = FNMS(Tl, Tm, Tj * Tk);
|
|
rio[WS(vs, 1)] = FMA(Tl, Tk, Tj * Tm);
|
|
}
|
|
{
|
|
E To, Ts, Tn, Tp;
|
|
To = T3 - T6;
|
|
Ts = Tq - Tr;
|
|
Tn = W[2];
|
|
Tp = W[3];
|
|
rio[WS(vs, 2)] = FMA(Tn, To, Tp * Ts);
|
|
iio[WS(vs, 2)] = FNMS(Tp, To, Tn * Ts);
|
|
}
|
|
{
|
|
E T16, T1c, T11, T17;
|
|
T16 = T12 + T15;
|
|
T1c = T18 - T1b;
|
|
T11 = W[4];
|
|
T17 = W[5];
|
|
iio[WS(vs, 3) + WS(rs, 2)] = FNMS(T17, T1c, T11 * T16);
|
|
rio[WS(vs, 3) + WS(rs, 2)] = FMA(T17, T16, T11 * T1c);
|
|
}
|
|
{
|
|
E T1G, T1I, T1F, T1H;
|
|
T1G = T1x - T1u;
|
|
T1I = T1A + T1D;
|
|
T1F = W[0];
|
|
T1H = W[1];
|
|
iio[WS(vs, 1) + WS(rs, 3)] = FNMS(T1H, T1I, T1F * T1G);
|
|
rio[WS(vs, 1) + WS(rs, 3)] = FMA(T1H, T1G, T1F * T1I);
|
|
}
|
|
{
|
|
E TQ, TU, TP, TR;
|
|
TQ = Tv - Ty;
|
|
TU = TS - TT;
|
|
TP = W[2];
|
|
TR = W[3];
|
|
rio[WS(vs, 2) + WS(rs, 1)] = FMA(TP, TQ, TR * TU);
|
|
iio[WS(vs, 2) + WS(rs, 1)] = FNMS(TR, TQ, TP * TU);
|
|
}
|
|
{
|
|
E T1e, T1g, T1d, T1f;
|
|
T1e = T15 - T12;
|
|
T1g = T18 + T1b;
|
|
T1d = W[0];
|
|
T1f = W[1];
|
|
iio[WS(vs, 1) + WS(rs, 2)] = FNMS(T1f, T1g, T1d * T1e);
|
|
rio[WS(vs, 1) + WS(rs, 2)] = FMA(T1f, T1e, T1d * T1g);
|
|
}
|
|
{
|
|
E T1i, T1m, T1h, T1j;
|
|
T1i = TX - T10;
|
|
T1m = T1k - T1l;
|
|
T1h = W[2];
|
|
T1j = W[3];
|
|
rio[WS(vs, 2) + WS(rs, 2)] = FMA(T1h, T1i, T1j * T1m);
|
|
iio[WS(vs, 2) + WS(rs, 2)] = FNMS(T1j, T1i, T1h * T1m);
|
|
}
|
|
{
|
|
E T1y, T1E, T1t, T1z;
|
|
T1y = T1u + T1x;
|
|
T1E = T1A - T1D;
|
|
T1t = W[4];
|
|
T1z = W[5];
|
|
iio[WS(vs, 3) + WS(rs, 3)] = FNMS(T1z, T1E, T1t * T1y);
|
|
rio[WS(vs, 3) + WS(rs, 3)] = FMA(T1z, T1y, T1t * T1E);
|
|
}
|
|
{
|
|
E TM, TO, TL, TN;
|
|
TM = TD - TA;
|
|
TO = TG + TJ;
|
|
TL = W[0];
|
|
TN = W[1];
|
|
iio[WS(vs, 1) + WS(rs, 1)] = FNMS(TN, TO, TL * TM);
|
|
rio[WS(vs, 1) + WS(rs, 1)] = FMA(TN, TM, TL * TO);
|
|
}
|
|
{
|
|
E TE, TK, Tz, TF;
|
|
TE = TA + TD;
|
|
TK = TG - TJ;
|
|
Tz = W[4];
|
|
TF = W[5];
|
|
iio[WS(vs, 3) + WS(rs, 1)] = FNMS(TF, TK, Tz * TE);
|
|
rio[WS(vs, 3) + WS(rs, 1)] = FMA(TF, TE, Tz * TK);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static const tw_instr twinstr[] = {
|
|
{ TW_FULL, 0, 4 },
|
|
{ TW_NEXT, 1, 0 }
|
|
};
|
|
|
|
static const ct_desc desc = { 4, "q1_4", twinstr, &GENUS, { 64, 24, 24, 0 }, 0, 0, 0 };
|
|
|
|
void X(codelet_q1_4) (planner *p) {
|
|
X(kdft_difsq_register) (p, q1_4, &desc);
|
|
}
|
|
#endif
|