mirror of
https://github.com/tildearrow/furnace.git
synced 2024-11-01 18:42:40 +00:00
54e93db207
not reliable yet
211 lines
5.8 KiB
C
211 lines
5.8 KiB
C
/*
|
|
* Copyright (c) 2003, 2007-14 Matteo Frigo
|
|
* Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
|
*
|
|
*/
|
|
|
|
|
|
/* Do a RODFT00 problem via an R2HC problem, with some pre/post-processing.
|
|
|
|
This code uses the trick from FFTPACK, also documented in a similar
|
|
form by Numerical Recipes. Unfortunately, this algorithm seems to
|
|
have intrinsic numerical problems (similar to those in
|
|
reodft11e-r2hc.c), possibly due to the fact that it multiplies its
|
|
input by a sine, causing a loss of precision near the zero. For
|
|
transforms of 16k points, it has already lost three or four decimal
|
|
places of accuracy, which we deem unacceptable.
|
|
|
|
So, we have abandoned this algorithm in favor of the one in
|
|
rodft00-r2hc-pad.c, which unfortunately sacrifices 30-50% in speed.
|
|
The only other alternative in the literature that does not have
|
|
similar numerical difficulties seems to be the direct adaptation of
|
|
the Cooley-Tukey decomposition for antisymmetric data, but this
|
|
would require a whole new set of codelets and it's not clear that
|
|
it's worth it at this point. However, we did implement the latter
|
|
algorithm for the specific case of odd n (logically adapting the
|
|
split-radix algorithm); see reodft00e-splitradix.c. */
|
|
|
|
#include "reodft/reodft.h"
|
|
|
|
typedef struct {
|
|
solver super;
|
|
} S;
|
|
|
|
typedef struct {
|
|
plan_rdft super;
|
|
plan *cld;
|
|
twid *td;
|
|
INT is, os;
|
|
INT n;
|
|
INT vl;
|
|
INT ivs, ovs;
|
|
} P;
|
|
|
|
static void apply(const plan *ego_, R *I, R *O)
|
|
{
|
|
const P *ego = (const P *) ego_;
|
|
INT is = ego->is, os = ego->os;
|
|
INT i, n = ego->n;
|
|
INT iv, vl = ego->vl;
|
|
INT ivs = ego->ivs, ovs = ego->ovs;
|
|
R *W = ego->td->W;
|
|
R *buf;
|
|
|
|
buf = (R *) MALLOC(sizeof(R) * n, BUFFERS);
|
|
|
|
for (iv = 0; iv < vl; ++iv, I += ivs, O += ovs) {
|
|
buf[0] = 0;
|
|
for (i = 1; i < n - i; ++i) {
|
|
E a, b, apb, amb;
|
|
a = I[is * (i - 1)];
|
|
b = I[is * ((n - i) - 1)];
|
|
apb = K(2.0) * W[i] * (a + b);
|
|
amb = (a - b);
|
|
buf[i] = apb + amb;
|
|
buf[n - i] = apb - amb;
|
|
}
|
|
if (i == n - i) {
|
|
buf[i] = K(4.0) * I[is * (i - 1)];
|
|
}
|
|
|
|
{
|
|
plan_rdft *cld = (plan_rdft *) ego->cld;
|
|
cld->apply((plan *) cld, buf, buf);
|
|
}
|
|
|
|
/* FIXME: use recursive/cascade summation for better stability? */
|
|
O[0] = buf[0] * 0.5;
|
|
for (i = 1; i + i < n - 1; ++i) {
|
|
INT k = i + i;
|
|
O[os * (k - 1)] = -buf[n - i];
|
|
O[os * k] = O[os * (k - 2)] + buf[i];
|
|
}
|
|
if (i + i == n - 1) {
|
|
O[os * (n - 2)] = -buf[n - i];
|
|
}
|
|
}
|
|
|
|
X(ifree)(buf);
|
|
}
|
|
|
|
static void awake(plan *ego_, enum wakefulness wakefulness)
|
|
{
|
|
P *ego = (P *) ego_;
|
|
static const tw_instr rodft00e_tw[] = {
|
|
{ TW_SIN, 0, 1 },
|
|
{ TW_NEXT, 1, 0 }
|
|
};
|
|
|
|
X(plan_awake)(ego->cld, wakefulness);
|
|
|
|
X(twiddle_awake)(wakefulness,
|
|
&ego->td, rodft00e_tw, 2*ego->n, 1, (ego->n+1)/2);
|
|
}
|
|
|
|
static void destroy(plan *ego_)
|
|
{
|
|
P *ego = (P *) ego_;
|
|
X(plan_destroy_internal)(ego->cld);
|
|
}
|
|
|
|
static void print(const plan *ego_, printer *p)
|
|
{
|
|
const P *ego = (const P *) ego_;
|
|
p->print(p, "(rodft00e-r2hc-%D%v%(%p%))", ego->n - 1, ego->vl, ego->cld);
|
|
}
|
|
|
|
static int applicable0(const solver *ego_, const problem *p_)
|
|
{
|
|
const problem_rdft *p = (const problem_rdft *) p_;
|
|
UNUSED(ego_);
|
|
|
|
return (1
|
|
&& p->sz->rnk == 1
|
|
&& p->vecsz->rnk <= 1
|
|
&& p->kind[0] == RODFT00
|
|
);
|
|
}
|
|
|
|
static int applicable(const solver *ego, const problem *p, const planner *plnr)
|
|
{
|
|
return (!NO_SLOWP(plnr) && applicable0(ego, p));
|
|
}
|
|
|
|
static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr)
|
|
{
|
|
P *pln;
|
|
const problem_rdft *p;
|
|
plan *cld;
|
|
R *buf;
|
|
INT n;
|
|
opcnt ops;
|
|
|
|
static const plan_adt padt = {
|
|
X(rdft_solve), awake, print, destroy
|
|
};
|
|
|
|
if (!applicable(ego_, p_, plnr))
|
|
return (plan *)0;
|
|
|
|
p = (const problem_rdft *) p_;
|
|
|
|
n = p->sz->dims[0].n + 1;
|
|
buf = (R *) MALLOC(sizeof(R) * n, BUFFERS);
|
|
|
|
cld = X(mkplan_d)(plnr, X(mkproblem_rdft_1_d)(X(mktensor_1d)(n, 1, 1),
|
|
X(mktensor_0d)(),
|
|
buf, buf, R2HC));
|
|
X(ifree)(buf);
|
|
if (!cld)
|
|
return (plan *)0;
|
|
|
|
pln = MKPLAN_RDFT(P, &padt, apply);
|
|
|
|
pln->n = n;
|
|
pln->is = p->sz->dims[0].is;
|
|
pln->os = p->sz->dims[0].os;
|
|
pln->cld = cld;
|
|
pln->td = 0;
|
|
|
|
X(tensor_tornk1)(p->vecsz, &pln->vl, &pln->ivs, &pln->ovs);
|
|
|
|
X(ops_zero)(&ops);
|
|
ops.other = 4 + (n-1)/2 * 5 + (n-2)/2 * 5;
|
|
ops.add = (n-1)/2 * 4 + (n-2)/2 * 1;
|
|
ops.mul = 1 + (n-1)/2 * 2;
|
|
if (n % 2 == 0)
|
|
ops.mul += 1;
|
|
|
|
X(ops_zero)(&pln->super.super.ops);
|
|
X(ops_madd2)(pln->vl, &ops, &pln->super.super.ops);
|
|
X(ops_madd2)(pln->vl, &cld->ops, &pln->super.super.ops);
|
|
|
|
return &(pln->super.super);
|
|
}
|
|
|
|
/* constructor */
|
|
static solver *mksolver(void)
|
|
{
|
|
static const solver_adt sadt = { PROBLEM_RDFT, mkplan, 0 };
|
|
S *slv = MKSOLVER(S, &sadt);
|
|
return &(slv->super);
|
|
}
|
|
|
|
void X(rodft00e_r2hc_register)(planner *p)
|
|
{
|
|
REGISTER_SOLVER(p, mksolver());
|
|
}
|