furnace/extern/fftw/dft/scalar/codelets/t2_20.c
2022-05-31 03:24:29 -05:00

1097 lines
29 KiB
C

/*
* Copyright (c) 2003, 2007-14 Matteo Frigo
* Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
*/
/* This file was automatically generated --- DO NOT EDIT */
/* Generated on Tue Sep 14 10:44:38 EDT 2021 */
#include "dft/codelet-dft.h"
#if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
/* Generated by: ../../../genfft/gen_twiddle.native -fma -compact -variables 4 -pipeline-latency 4 -twiddle-log3 -precompute-twiddles -n 20 -name t2_20 -include dft/scalar/t.h */
/*
* This function contains 276 FP additions, 198 FP multiplications,
* (or, 136 additions, 58 multiplications, 140 fused multiply/add),
* 95 stack variables, 4 constants, and 80 memory accesses
*/
#include "dft/scalar/t.h"
static void t2_20(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
{
DK(KP951056516, +0.951056516295153572116439333379382143405698634);
DK(KP559016994, +0.559016994374947424102293417182819058860154590);
DK(KP250000000, +0.250000000000000000000000000000000000000000000);
DK(KP618033988, +0.618033988749894848204586834365638117720309180);
{
INT m;
for (m = mb, W = W + (mb * 8); m < me; m = m + 1, ri = ri + ms, ii = ii + ms, W = W + 8, MAKE_VOLATILE_STRIDE(40, rs)) {
E T2, Th, Tf, T6, T5, Ti, Tl, T1n, T3, Tt, Tv, T7, T17, T1L, T24;
E Tb, T13, T1P, T21, T1b, T1D, T1A, T1H, T1f, TA, Tw, Tq, Tm, TK, T1S;
E TO, T1p, T1q, T1u, T2n, T2k, T2h, T2d;
{
E Tk, Ta, T1e, T4, T1a, Tj, T12, T1G, T16, T1K, Tg, Tz;
T2 = W[0];
Th = W[3];
Tf = W[2];
Tg = T2 * Tf;
Tk = T2 * Th;
T6 = W[5];
Ta = T2 * T6;
T1e = Tf * T6;
T5 = W[1];
Ti = FNMS(T5, Th, Tg);
Tl = FMA(T5, Tf, Tk);
T1n = FMA(T5, Th, Tg);
T3 = W[4];
T4 = T2 * T3;
T1a = Tf * T3;
Tj = Ti * T3;
Tt = W[6];
T12 = Tf * Tt;
T1G = T2 * Tt;
Tv = W[7];
T16 = Tf * Tv;
T1K = T2 * Tv;
T7 = FNMS(T5, T6, T4);
T17 = FNMS(Th, Tt, T16);
T1L = FNMS(T5, Tt, T1K);
T24 = FMA(Th, T3, T1e);
Tb = FMA(T5, T3, Ta);
T13 = FMA(Th, Tv, T12);
T1P = FNMS(Tl, T6, Tj);
T21 = FNMS(Th, T6, T1a);
T1b = FMA(Th, T6, T1a);
T1D = FNMS(T5, T3, Ta);
T1A = FMA(T5, T6, T4);
T1H = FMA(T5, Tv, T1G);
T1f = FNMS(Th, T3, T1e);
Tz = Ti * Tv;
TA = FNMS(Tl, Tt, Tz);
{
E Tu, Tp, TJ, TN;
Tu = Ti * Tt;
Tw = FMA(Tl, Tv, Tu);
Tp = Ti * T6;
Tq = FNMS(Tl, T3, Tp);
Tm = FMA(Tl, T6, Tj);
TJ = Tm * Tt;
TN = Tm * Tv;
TK = FMA(Tq, Tv, TJ);
T1S = FMA(Tl, T3, Tp);
TO = FNMS(Tq, Tt, TN);
{
E T1o, T2g, T1t, T2c;
T1o = T1n * T3;
T2g = T1n * Tv;
T1t = T1n * T6;
T2c = T1n * Tt;
T1p = FNMS(T5, Tf, Tk);
T1q = FNMS(T1p, T6, T1o);
T1u = FMA(T1p, T3, T1t);
T2n = FNMS(T1p, T3, T1t);
T2k = FMA(T1p, T6, T1o);
T2h = FNMS(T1p, Tt, T2g);
T2d = FMA(T1p, Tv, T2c);
}
}
}
{
E Te, T2C, T4L, T57, TD, T58, T2H, T4H, T11, T2v, T4k, T4v, T2P, T3P, T3C;
E T3Z, T2r, T2z, T4g, T4z, T3b, T3T, T3u, T43, T20, T2y, T4d, T4y, T34, T3S;
E T3n, T42, T1y, T2w, T4n, T4w, T2W, T3Q, T3J, T40;
{
E T1, T4K, T8, T9, Tc, T4I, Td, T4J;
T1 = ri[0];
T4K = ii[0];
T8 = ri[WS(rs, 10)];
T9 = T7 * T8;
Tc = ii[WS(rs, 10)];
T4I = T7 * Tc;
Td = FMA(Tb, Tc, T9);
Te = T1 + Td;
T2C = T1 - Td;
T4J = FNMS(Tb, T8, T4I);
T4L = T4J + T4K;
T57 = T4K - T4J;
}
{
E Tn, To, Tr, T2D, Tx, Ty, TB, T2F;
Tn = ri[WS(rs, 5)];
To = Tm * Tn;
Tr = ii[WS(rs, 5)];
T2D = Tm * Tr;
Tx = ri[WS(rs, 15)];
Ty = Tw * Tx;
TB = ii[WS(rs, 15)];
T2F = Tw * TB;
{
E Ts, TC, T2E, T2G;
Ts = FMA(Tq, Tr, To);
TC = FMA(TA, TB, Ty);
TD = Ts + TC;
T58 = Ts - TC;
T2E = FNMS(Tq, Tn, T2D);
T2G = FNMS(TA, Tx, T2F);
T2H = T2E - T2G;
T4H = T2E + T2G;
}
}
{
E TI, T3x, TZ, T2N, TQ, T3z, TV, T2L;
{
E TF, TG, TH, T3w;
TF = ri[WS(rs, 4)];
TG = Ti * TF;
TH = ii[WS(rs, 4)];
T3w = Ti * TH;
TI = FMA(Tl, TH, TG);
T3x = FNMS(Tl, TF, T3w);
}
{
E TW, TX, TY, T2M;
TW = ri[WS(rs, 19)];
TX = Tt * TW;
TY = ii[WS(rs, 19)];
T2M = Tt * TY;
TZ = FMA(Tv, TY, TX);
T2N = FNMS(Tv, TW, T2M);
}
{
E TL, TM, TP, T3y;
TL = ri[WS(rs, 14)];
TM = TK * TL;
TP = ii[WS(rs, 14)];
T3y = TK * TP;
TQ = FMA(TO, TP, TM);
T3z = FNMS(TO, TL, T3y);
}
{
E TS, TT, TU, T2K;
TS = ri[WS(rs, 9)];
TT = T3 * TS;
TU = ii[WS(rs, 9)];
T2K = T3 * TU;
TV = FMA(T6, TU, TT);
T2L = FNMS(T6, TS, T2K);
}
{
E TR, T10, T4i, T4j;
TR = TI + TQ;
T10 = TV + TZ;
T11 = TR - T10;
T2v = TR + T10;
T4i = T3x + T3z;
T4j = T2L + T2N;
T4k = T4i - T4j;
T4v = T4i + T4j;
}
{
E T2J, T2O, T3A, T3B;
T2J = TI - TQ;
T2O = T2L - T2N;
T2P = T2J - T2O;
T3P = T2J + T2O;
T3A = T3x - T3z;
T3B = TV - TZ;
T3C = T3A + T3B;
T3Z = T3A - T3B;
}
}
{
E T26, T3p, T2p, T39, T2a, T3r, T2j, T37;
{
E T22, T23, T25, T3o;
T22 = ri[WS(rs, 12)];
T23 = T21 * T22;
T25 = ii[WS(rs, 12)];
T3o = T21 * T25;
T26 = FMA(T24, T25, T23);
T3p = FNMS(T24, T22, T3o);
}
{
E T2l, T2m, T2o, T38;
T2l = ri[WS(rs, 7)];
T2m = T2k * T2l;
T2o = ii[WS(rs, 7)];
T38 = T2k * T2o;
T2p = FMA(T2n, T2o, T2m);
T39 = FNMS(T2n, T2l, T38);
}
{
E T27, T28, T29, T3q;
T27 = ri[WS(rs, 2)];
T28 = T1n * T27;
T29 = ii[WS(rs, 2)];
T3q = T1n * T29;
T2a = FMA(T1p, T29, T28);
T3r = FNMS(T1p, T27, T3q);
}
{
E T2e, T2f, T2i, T36;
T2e = ri[WS(rs, 17)];
T2f = T2d * T2e;
T2i = ii[WS(rs, 17)];
T36 = T2d * T2i;
T2j = FMA(T2h, T2i, T2f);
T37 = FNMS(T2h, T2e, T36);
}
{
E T2b, T2q, T4e, T4f;
T2b = T26 + T2a;
T2q = T2j + T2p;
T2r = T2b - T2q;
T2z = T2b + T2q;
T4e = T3p + T3r;
T4f = T37 + T39;
T4g = T4e - T4f;
T4z = T4e + T4f;
}
{
E T35, T3a, T3s, T3t;
T35 = T26 - T2a;
T3a = T37 - T39;
T3b = T35 - T3a;
T3T = T35 + T3a;
T3s = T3p - T3r;
T3t = T2j - T2p;
T3u = T3s + T3t;
T43 = T3s - T3t;
}
}
{
E T1F, T3i, T1Y, T32, T1N, T3k, T1U, T30;
{
E T1B, T1C, T1E, T3h;
T1B = ri[WS(rs, 8)];
T1C = T1A * T1B;
T1E = ii[WS(rs, 8)];
T3h = T1A * T1E;
T1F = FMA(T1D, T1E, T1C);
T3i = FNMS(T1D, T1B, T3h);
}
{
E T1V, T1W, T1X, T31;
T1V = ri[WS(rs, 3)];
T1W = Tf * T1V;
T1X = ii[WS(rs, 3)];
T31 = Tf * T1X;
T1Y = FMA(Th, T1X, T1W);
T32 = FNMS(Th, T1V, T31);
}
{
E T1I, T1J, T1M, T3j;
T1I = ri[WS(rs, 18)];
T1J = T1H * T1I;
T1M = ii[WS(rs, 18)];
T3j = T1H * T1M;
T1N = FMA(T1L, T1M, T1J);
T3k = FNMS(T1L, T1I, T3j);
}
{
E T1Q, T1R, T1T, T2Z;
T1Q = ri[WS(rs, 13)];
T1R = T1P * T1Q;
T1T = ii[WS(rs, 13)];
T2Z = T1P * T1T;
T1U = FMA(T1S, T1T, T1R);
T30 = FNMS(T1S, T1Q, T2Z);
}
{
E T1O, T1Z, T4b, T4c;
T1O = T1F + T1N;
T1Z = T1U + T1Y;
T20 = T1O - T1Z;
T2y = T1O + T1Z;
T4b = T3i + T3k;
T4c = T30 + T32;
T4d = T4b - T4c;
T4y = T4b + T4c;
}
{
E T2Y, T33, T3l, T3m;
T2Y = T1F - T1N;
T33 = T30 - T32;
T34 = T2Y - T33;
T3S = T2Y + T33;
T3l = T3i - T3k;
T3m = T1U - T1Y;
T3n = T3l + T3m;
T42 = T3l - T3m;
}
}
{
E T19, T3E, T1w, T2U, T1h, T3G, T1m, T2S;
{
E T14, T15, T18, T3D;
T14 = ri[WS(rs, 16)];
T15 = T13 * T14;
T18 = ii[WS(rs, 16)];
T3D = T13 * T18;
T19 = FMA(T17, T18, T15);
T3E = FNMS(T17, T14, T3D);
}
{
E T1r, T1s, T1v, T2T;
T1r = ri[WS(rs, 11)];
T1s = T1q * T1r;
T1v = ii[WS(rs, 11)];
T2T = T1q * T1v;
T1w = FMA(T1u, T1v, T1s);
T2U = FNMS(T1u, T1r, T2T);
}
{
E T1c, T1d, T1g, T3F;
T1c = ri[WS(rs, 6)];
T1d = T1b * T1c;
T1g = ii[WS(rs, 6)];
T3F = T1b * T1g;
T1h = FMA(T1f, T1g, T1d);
T3G = FNMS(T1f, T1c, T3F);
}
{
E T1j, T1k, T1l, T2R;
T1j = ri[WS(rs, 1)];
T1k = T2 * T1j;
T1l = ii[WS(rs, 1)];
T2R = T2 * T1l;
T1m = FMA(T5, T1l, T1k);
T2S = FNMS(T5, T1j, T2R);
}
{
E T1i, T1x, T4l, T4m;
T1i = T19 + T1h;
T1x = T1m + T1w;
T1y = T1i - T1x;
T2w = T1i + T1x;
T4l = T3E + T3G;
T4m = T2S + T2U;
T4n = T4l - T4m;
T4w = T4l + T4m;
}
{
E T2Q, T2V, T3H, T3I;
T2Q = T19 - T1h;
T2V = T2S - T2U;
T2W = T2Q - T2V;
T3Q = T2Q + T2V;
T3H = T3E - T3G;
T3I = T1m - T1w;
T3J = T3H + T3I;
T40 = T3H - T3I;
}
}
{
E T4p, T4r, TE, T2t, T48, T49, T4q, T4a;
{
E T4h, T4o, T1z, T2s;
T4h = T4d - T4g;
T4o = T4k - T4n;
T4p = FNMS(KP618033988, T4o, T4h);
T4r = FMA(KP618033988, T4h, T4o);
TE = Te - TD;
T1z = T11 + T1y;
T2s = T20 + T2r;
T2t = T1z + T2s;
T48 = FNMS(KP250000000, T2t, TE);
T49 = T1z - T2s;
}
ri[WS(rs, 10)] = TE + T2t;
T4q = FMA(KP559016994, T49, T48);
ri[WS(rs, 14)] = FNMS(KP951056516, T4r, T4q);
ri[WS(rs, 6)] = FMA(KP951056516, T4r, T4q);
T4a = FNMS(KP559016994, T49, T48);
ri[WS(rs, 2)] = FNMS(KP951056516, T4p, T4a);
ri[WS(rs, 18)] = FMA(KP951056516, T4p, T4a);
}
{
E T54, T56, T4V, T4Y, T4Z, T50, T55, T51;
{
E T52, T53, T4W, T4X;
T52 = T20 - T2r;
T53 = T11 - T1y;
T54 = FNMS(KP618033988, T53, T52);
T56 = FMA(KP618033988, T52, T53);
T4V = T4L - T4H;
T4W = T4k + T4n;
T4X = T4d + T4g;
T4Y = T4W + T4X;
T4Z = FNMS(KP250000000, T4Y, T4V);
T50 = T4W - T4X;
}
ii[WS(rs, 10)] = T4Y + T4V;
T55 = FMA(KP559016994, T50, T4Z);
ii[WS(rs, 6)] = FNMS(KP951056516, T56, T55);
ii[WS(rs, 14)] = FMA(KP951056516, T56, T55);
T51 = FNMS(KP559016994, T50, T4Z);
ii[WS(rs, 2)] = FMA(KP951056516, T54, T51);
ii[WS(rs, 18)] = FNMS(KP951056516, T54, T51);
}
{
E T4B, T4D, T2u, T2B, T4s, T4t, T4C, T4u;
{
E T4x, T4A, T2x, T2A;
T4x = T4v - T4w;
T4A = T4y - T4z;
T4B = FMA(KP618033988, T4A, T4x);
T4D = FNMS(KP618033988, T4x, T4A);
T2u = Te + TD;
T2x = T2v + T2w;
T2A = T2y + T2z;
T2B = T2x + T2A;
T4s = FNMS(KP250000000, T2B, T2u);
T4t = T2x - T2A;
}
ri[0] = T2u + T2B;
T4C = FNMS(KP559016994, T4t, T4s);
ri[WS(rs, 12)] = FNMS(KP951056516, T4D, T4C);
ri[WS(rs, 8)] = FMA(KP951056516, T4D, T4C);
T4u = FMA(KP559016994, T4t, T4s);
ri[WS(rs, 4)] = FNMS(KP951056516, T4B, T4u);
ri[WS(rs, 16)] = FMA(KP951056516, T4B, T4u);
}
{
E T4S, T4U, T4M, T4G, T4N, T4O, T4T, T4P;
{
E T4Q, T4R, T4E, T4F;
T4Q = T2v - T2w;
T4R = T2y - T2z;
T4S = FMA(KP618033988, T4R, T4Q);
T4U = FNMS(KP618033988, T4Q, T4R);
T4M = T4H + T4L;
T4E = T4v + T4w;
T4F = T4y + T4z;
T4G = T4E + T4F;
T4N = FNMS(KP250000000, T4G, T4M);
T4O = T4E - T4F;
}
ii[0] = T4G + T4M;
T4T = FNMS(KP559016994, T4O, T4N);
ii[WS(rs, 8)] = FNMS(KP951056516, T4U, T4T);
ii[WS(rs, 12)] = FMA(KP951056516, T4U, T4T);
T4P = FMA(KP559016994, T4O, T4N);
ii[WS(rs, 4)] = FMA(KP951056516, T4S, T4P);
ii[WS(rs, 16)] = FNMS(KP951056516, T4S, T4P);
}
{
E T3L, T3N, T2I, T3d, T3e, T3f, T3M, T3g;
{
E T3v, T3K, T2X, T3c;
T3v = T3n - T3u;
T3K = T3C - T3J;
T3L = FNMS(KP618033988, T3K, T3v);
T3N = FMA(KP618033988, T3v, T3K);
T2I = T2C - T2H;
T2X = T2P + T2W;
T3c = T34 + T3b;
T3d = T2X + T3c;
T3e = FNMS(KP250000000, T3d, T2I);
T3f = T2X - T3c;
}
ri[WS(rs, 15)] = T2I + T3d;
T3M = FMA(KP559016994, T3f, T3e);
ri[WS(rs, 11)] = FMA(KP951056516, T3N, T3M);
ri[WS(rs, 19)] = FNMS(KP951056516, T3N, T3M);
T3g = FNMS(KP559016994, T3f, T3e);
ri[WS(rs, 3)] = FMA(KP951056516, T3L, T3g);
ri[WS(rs, 7)] = FNMS(KP951056516, T3L, T3g);
}
{
E T5u, T5w, T5l, T5o, T5p, T5q, T5v, T5r;
{
E T5s, T5t, T5m, T5n;
T5s = T34 - T3b;
T5t = T2P - T2W;
T5u = FNMS(KP618033988, T5t, T5s);
T5w = FMA(KP618033988, T5s, T5t);
T5l = T58 + T57;
T5m = T3C + T3J;
T5n = T3n + T3u;
T5o = T5m + T5n;
T5p = FNMS(KP250000000, T5o, T5l);
T5q = T5m - T5n;
}
ii[WS(rs, 15)] = T5o + T5l;
T5v = FMA(KP559016994, T5q, T5p);
ii[WS(rs, 11)] = FNMS(KP951056516, T5w, T5v);
ii[WS(rs, 19)] = FMA(KP951056516, T5w, T5v);
T5r = FNMS(KP559016994, T5q, T5p);
ii[WS(rs, 3)] = FNMS(KP951056516, T5u, T5r);
ii[WS(rs, 7)] = FMA(KP951056516, T5u, T5r);
}
{
E T45, T47, T3O, T3V, T3W, T3X, T46, T3Y;
{
E T41, T44, T3R, T3U;
T41 = T3Z - T40;
T44 = T42 - T43;
T45 = FMA(KP618033988, T44, T41);
T47 = FNMS(KP618033988, T41, T44);
T3O = T2C + T2H;
T3R = T3P + T3Q;
T3U = T3S + T3T;
T3V = T3R + T3U;
T3W = FNMS(KP250000000, T3V, T3O);
T3X = T3R - T3U;
}
ri[WS(rs, 5)] = T3O + T3V;
T46 = FNMS(KP559016994, T3X, T3W);
ri[WS(rs, 13)] = FMA(KP951056516, T47, T46);
ri[WS(rs, 17)] = FNMS(KP951056516, T47, T46);
T3Y = FMA(KP559016994, T3X, T3W);
ri[WS(rs, 1)] = FMA(KP951056516, T45, T3Y);
ri[WS(rs, 9)] = FNMS(KP951056516, T45, T3Y);
}
{
E T5i, T5k, T59, T5c, T5d, T5e, T5j, T5f;
{
E T5g, T5h, T5a, T5b;
T5g = T3P - T3Q;
T5h = T3S - T3T;
T5i = FMA(KP618033988, T5h, T5g);
T5k = FNMS(KP618033988, T5g, T5h);
T59 = T57 - T58;
T5a = T3Z + T40;
T5b = T42 + T43;
T5c = T5a + T5b;
T5d = FNMS(KP250000000, T5c, T59);
T5e = T5a - T5b;
}
ii[WS(rs, 5)] = T5c + T59;
T5j = FNMS(KP559016994, T5e, T5d);
ii[WS(rs, 13)] = FNMS(KP951056516, T5k, T5j);
ii[WS(rs, 17)] = FMA(KP951056516, T5k, T5j);
T5f = FMA(KP559016994, T5e, T5d);
ii[WS(rs, 1)] = FNMS(KP951056516, T5i, T5f);
ii[WS(rs, 9)] = FMA(KP951056516, T5i, T5f);
}
}
}
}
}
static const tw_instr twinstr[] = {
{ TW_CEXP, 0, 1 },
{ TW_CEXP, 0, 3 },
{ TW_CEXP, 0, 9 },
{ TW_CEXP, 0, 19 },
{ TW_NEXT, 1, 0 }
};
static const ct_desc desc = { 20, "t2_20", twinstr, &GENUS, { 136, 58, 140, 0 }, 0, 0, 0 };
void X(codelet_t2_20) (planner *p) {
X(kdft_dit_register) (p, t2_20, &desc);
}
#else
/* Generated by: ../../../genfft/gen_twiddle.native -compact -variables 4 -pipeline-latency 4 -twiddle-log3 -precompute-twiddles -n 20 -name t2_20 -include dft/scalar/t.h */
/*
* This function contains 276 FP additions, 164 FP multiplications,
* (or, 204 additions, 92 multiplications, 72 fused multiply/add),
* 123 stack variables, 4 constants, and 80 memory accesses
*/
#include "dft/scalar/t.h"
static void t2_20(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
{
DK(KP587785252, +0.587785252292473129168705954639072768597652438);
DK(KP951056516, +0.951056516295153572116439333379382143405698634);
DK(KP250000000, +0.250000000000000000000000000000000000000000000);
DK(KP559016994, +0.559016994374947424102293417182819058860154590);
{
INT m;
for (m = mb, W = W + (mb * 8); m < me; m = m + 1, ri = ri + ms, ii = ii + ms, W = W + 8, MAKE_VOLATILE_STRIDE(40, rs)) {
E T2, T5, Tg, Ti, Tk, To, T1h, T1f, T6, T3, T8, T14, T1Q, Tc, T1O;
E T1v, T18, T1t, T1n, T24, T1j, T22, Tq, Tu, T1E, T1G, Tx, Ty, Tz, TJ;
E T1Z, TB, T1X, T1A, TZ, TL, T1y, TX;
{
E T7, T16, Ta, T13, T4, T17, Tb, T12;
{
E Th, Tn, Tj, Tm;
T2 = W[0];
T5 = W[1];
Tg = W[2];
Ti = W[3];
Th = T2 * Tg;
Tn = T5 * Tg;
Tj = T5 * Ti;
Tm = T2 * Ti;
Tk = Th - Tj;
To = Tm + Tn;
T1h = Tm - Tn;
T1f = Th + Tj;
T6 = W[5];
T7 = T5 * T6;
T16 = Tg * T6;
Ta = T2 * T6;
T13 = Ti * T6;
T3 = W[4];
T4 = T2 * T3;
T17 = Ti * T3;
Tb = T5 * T3;
T12 = Tg * T3;
}
T8 = T4 - T7;
T14 = T12 + T13;
T1Q = T16 + T17;
Tc = Ta + Tb;
T1O = T12 - T13;
T1v = Ta - Tb;
T18 = T16 - T17;
T1t = T4 + T7;
{
E T1l, T1m, T1g, T1i;
T1l = T1f * T6;
T1m = T1h * T3;
T1n = T1l + T1m;
T24 = T1l - T1m;
T1g = T1f * T3;
T1i = T1h * T6;
T1j = T1g - T1i;
T22 = T1g + T1i;
{
E Tl, Tp, Ts, Tt;
Tl = Tk * T3;
Tp = To * T6;
Tq = Tl + Tp;
Ts = Tk * T6;
Tt = To * T3;
Tu = Ts - Tt;
T1E = Tl - Tp;
T1G = Ts + Tt;
Tx = W[6];
Ty = W[7];
Tz = FMA(Tk, Tx, To * Ty);
TJ = FMA(Tq, Tx, Tu * Ty);
T1Z = FNMS(T1h, Tx, T1f * Ty);
TB = FNMS(To, Tx, Tk * Ty);
T1X = FMA(T1f, Tx, T1h * Ty);
T1A = FNMS(T5, Tx, T2 * Ty);
TZ = FNMS(Ti, Tx, Tg * Ty);
TL = FNMS(Tu, Tx, Tq * Ty);
T1y = FMA(T2, Tx, T5 * Ty);
TX = FMA(Tg, Tx, Ti * Ty);
}
}
}
{
E TF, T2b, T4A, T4J, T2K, T3r, T4a, T4m, T1N, T28, T29, T3C, T3F, T4o, T3X;
E T3Y, T44, T2f, T2g, T2h, T2n, T2s, T4L, T3g, T3h, T4w, T3n, T3o, T3p, T30;
E T35, T36, TW, T1r, T1s, T3J, T3M, T4n, T3U, T3V, T43, T2c, T2d, T2e, T2y;
E T2D, T4K, T3d, T3e, T4v, T3k, T3l, T3m, T2P, T2U, T2V;
{
E T1, T48, Te, T47, Tw, T2H, TD, T2I, T9, Td;
T1 = ri[0];
T48 = ii[0];
T9 = ri[WS(rs, 10)];
Td = ii[WS(rs, 10)];
Te = FMA(T8, T9, Tc * Td);
T47 = FNMS(Tc, T9, T8 * Td);
{
E Tr, Tv, TA, TC;
Tr = ri[WS(rs, 5)];
Tv = ii[WS(rs, 5)];
Tw = FMA(Tq, Tr, Tu * Tv);
T2H = FNMS(Tu, Tr, Tq * Tv);
TA = ri[WS(rs, 15)];
TC = ii[WS(rs, 15)];
TD = FMA(Tz, TA, TB * TC);
T2I = FNMS(TB, TA, Tz * TC);
}
{
E Tf, TE, T4y, T4z;
Tf = T1 + Te;
TE = Tw + TD;
TF = Tf - TE;
T2b = Tf + TE;
T4y = T48 - T47;
T4z = Tw - TD;
T4A = T4y - T4z;
T4J = T4z + T4y;
}
{
E T2G, T2J, T46, T49;
T2G = T1 - Te;
T2J = T2H - T2I;
T2K = T2G - T2J;
T3r = T2G + T2J;
T46 = T2H + T2I;
T49 = T47 + T48;
T4a = T46 + T49;
T4m = T49 - T46;
}
}
{
E T1D, T3A, T2l, T2W, T27, T3E, T2r, T34, T1M, T3B, T2m, T2Z, T1W, T3D, T2q;
E T31;
{
E T1x, T2j, T1C, T2k;
{
E T1u, T1w, T1z, T1B;
T1u = ri[WS(rs, 8)];
T1w = ii[WS(rs, 8)];
T1x = FMA(T1t, T1u, T1v * T1w);
T2j = FNMS(T1v, T1u, T1t * T1w);
T1z = ri[WS(rs, 18)];
T1B = ii[WS(rs, 18)];
T1C = FMA(T1y, T1z, T1A * T1B);
T2k = FNMS(T1A, T1z, T1y * T1B);
}
T1D = T1x + T1C;
T3A = T2j + T2k;
T2l = T2j - T2k;
T2W = T1x - T1C;
}
{
E T21, T32, T26, T33;
{
E T1Y, T20, T23, T25;
T1Y = ri[WS(rs, 17)];
T20 = ii[WS(rs, 17)];
T21 = FMA(T1X, T1Y, T1Z * T20);
T32 = FNMS(T1Z, T1Y, T1X * T20);
T23 = ri[WS(rs, 7)];
T25 = ii[WS(rs, 7)];
T26 = FMA(T22, T23, T24 * T25);
T33 = FNMS(T24, T23, T22 * T25);
}
T27 = T21 + T26;
T3E = T32 + T33;
T2r = T21 - T26;
T34 = T32 - T33;
}
{
E T1I, T2X, T1L, T2Y;
{
E T1F, T1H, T1J, T1K;
T1F = ri[WS(rs, 13)];
T1H = ii[WS(rs, 13)];
T1I = FMA(T1E, T1F, T1G * T1H);
T2X = FNMS(T1G, T1F, T1E * T1H);
T1J = ri[WS(rs, 3)];
T1K = ii[WS(rs, 3)];
T1L = FMA(Tg, T1J, Ti * T1K);
T2Y = FNMS(Ti, T1J, Tg * T1K);
}
T1M = T1I + T1L;
T3B = T2X + T2Y;
T2m = T1I - T1L;
T2Z = T2X - T2Y;
}
{
E T1S, T2o, T1V, T2p;
{
E T1P, T1R, T1T, T1U;
T1P = ri[WS(rs, 12)];
T1R = ii[WS(rs, 12)];
T1S = FMA(T1O, T1P, T1Q * T1R);
T2o = FNMS(T1Q, T1P, T1O * T1R);
T1T = ri[WS(rs, 2)];
T1U = ii[WS(rs, 2)];
T1V = FMA(T1f, T1T, T1h * T1U);
T2p = FNMS(T1h, T1T, T1f * T1U);
}
T1W = T1S + T1V;
T3D = T2o + T2p;
T2q = T2o - T2p;
T31 = T1S - T1V;
}
T1N = T1D - T1M;
T28 = T1W - T27;
T29 = T1N + T28;
T3C = T3A - T3B;
T3F = T3D - T3E;
T4o = T3C + T3F;
T3X = T3A + T3B;
T3Y = T3D + T3E;
T44 = T3X + T3Y;
T2f = T1D + T1M;
T2g = T1W + T27;
T2h = T2f + T2g;
T2n = T2l + T2m;
T2s = T2q + T2r;
T4L = T2n + T2s;
T3g = T2l - T2m;
T3h = T2q - T2r;
T4w = T3g + T3h;
T3n = T2W + T2Z;
T3o = T31 + T34;
T3p = T3n + T3o;
T30 = T2W - T2Z;
T35 = T31 - T34;
T36 = T30 + T35;
}
{
E TO, T3H, T2w, T2L, T1q, T3L, T2C, T2T, TV, T3I, T2x, T2O, T1b, T3K, T2B;
E T2Q;
{
E TI, T2u, TN, T2v;
{
E TG, TH, TK, TM;
TG = ri[WS(rs, 4)];
TH = ii[WS(rs, 4)];
TI = FMA(Tk, TG, To * TH);
T2u = FNMS(To, TG, Tk * TH);
TK = ri[WS(rs, 14)];
TM = ii[WS(rs, 14)];
TN = FMA(TJ, TK, TL * TM);
T2v = FNMS(TL, TK, TJ * TM);
}
TO = TI + TN;
T3H = T2u + T2v;
T2w = T2u - T2v;
T2L = TI - TN;
}
{
E T1e, T2R, T1p, T2S;
{
E T1c, T1d, T1k, T1o;
T1c = ri[WS(rs, 1)];
T1d = ii[WS(rs, 1)];
T1e = FMA(T2, T1c, T5 * T1d);
T2R = FNMS(T5, T1c, T2 * T1d);
T1k = ri[WS(rs, 11)];
T1o = ii[WS(rs, 11)];
T1p = FMA(T1j, T1k, T1n * T1o);
T2S = FNMS(T1n, T1k, T1j * T1o);
}
T1q = T1e + T1p;
T3L = T2R + T2S;
T2C = T1e - T1p;
T2T = T2R - T2S;
}
{
E TR, T2M, TU, T2N;
{
E TP, TQ, TS, TT;
TP = ri[WS(rs, 9)];
TQ = ii[WS(rs, 9)];
TR = FMA(T3, TP, T6 * TQ);
T2M = FNMS(T6, TP, T3 * TQ);
TS = ri[WS(rs, 19)];
TT = ii[WS(rs, 19)];
TU = FMA(Tx, TS, Ty * TT);
T2N = FNMS(Ty, TS, Tx * TT);
}
TV = TR + TU;
T3I = T2M + T2N;
T2x = TR - TU;
T2O = T2M - T2N;
}
{
E T11, T2z, T1a, T2A;
{
E TY, T10, T15, T19;
TY = ri[WS(rs, 16)];
T10 = ii[WS(rs, 16)];
T11 = FMA(TX, TY, TZ * T10);
T2z = FNMS(TZ, TY, TX * T10);
T15 = ri[WS(rs, 6)];
T19 = ii[WS(rs, 6)];
T1a = FMA(T14, T15, T18 * T19);
T2A = FNMS(T18, T15, T14 * T19);
}
T1b = T11 + T1a;
T3K = T2z + T2A;
T2B = T2z - T2A;
T2Q = T11 - T1a;
}
TW = TO - TV;
T1r = T1b - T1q;
T1s = TW + T1r;
T3J = T3H - T3I;
T3M = T3K - T3L;
T4n = T3J + T3M;
T3U = T3H + T3I;
T3V = T3K + T3L;
T43 = T3U + T3V;
T2c = TO + TV;
T2d = T1b + T1q;
T2e = T2c + T2d;
T2y = T2w + T2x;
T2D = T2B + T2C;
T4K = T2y + T2D;
T3d = T2w - T2x;
T3e = T2B - T2C;
T4v = T3d + T3e;
T3k = T2L + T2O;
T3l = T2Q + T2T;
T3m = T3k + T3l;
T2P = T2L - T2O;
T2U = T2Q - T2T;
T2V = T2P + T2U;
}
{
E T3y, T2a, T3x, T3O, T3Q, T3G, T3N, T3P, T3z;
T3y = KP559016994 * (T1s - T29);
T2a = T1s + T29;
T3x = FNMS(KP250000000, T2a, TF);
T3G = T3C - T3F;
T3N = T3J - T3M;
T3O = FNMS(KP587785252, T3N, KP951056516 * T3G);
T3Q = FMA(KP951056516, T3N, KP587785252 * T3G);
ri[WS(rs, 10)] = TF + T2a;
T3P = T3y + T3x;
ri[WS(rs, 14)] = T3P - T3Q;
ri[WS(rs, 6)] = T3P + T3Q;
T3z = T3x - T3y;
ri[WS(rs, 2)] = T3z - T3O;
ri[WS(rs, 18)] = T3z + T3O;
}
{
E T4r, T4p, T4q, T4l, T4u, T4j, T4k, T4t, T4s;
T4r = KP559016994 * (T4n - T4o);
T4p = T4n + T4o;
T4q = FNMS(KP250000000, T4p, T4m);
T4j = T1N - T28;
T4k = TW - T1r;
T4l = FNMS(KP587785252, T4k, KP951056516 * T4j);
T4u = FMA(KP951056516, T4k, KP587785252 * T4j);
ii[WS(rs, 10)] = T4p + T4m;
T4t = T4r + T4q;
ii[WS(rs, 6)] = T4t - T4u;
ii[WS(rs, 14)] = T4u + T4t;
T4s = T4q - T4r;
ii[WS(rs, 2)] = T4l + T4s;
ii[WS(rs, 18)] = T4s - T4l;
}
{
E T3R, T2i, T3S, T40, T42, T3W, T3Z, T41, T3T;
T3R = KP559016994 * (T2e - T2h);
T2i = T2e + T2h;
T3S = FNMS(KP250000000, T2i, T2b);
T3W = T3U - T3V;
T3Z = T3X - T3Y;
T40 = FMA(KP951056516, T3W, KP587785252 * T3Z);
T42 = FNMS(KP587785252, T3W, KP951056516 * T3Z);
ri[0] = T2b + T2i;
T41 = T3S - T3R;
ri[WS(rs, 12)] = T41 - T42;
ri[WS(rs, 8)] = T41 + T42;
T3T = T3R + T3S;
ri[WS(rs, 4)] = T3T - T40;
ri[WS(rs, 16)] = T3T + T40;
}
{
E T4e, T45, T4f, T4d, T4i, T4b, T4c, T4h, T4g;
T4e = KP559016994 * (T43 - T44);
T45 = T43 + T44;
T4f = FNMS(KP250000000, T45, T4a);
T4b = T2c - T2d;
T4c = T2f - T2g;
T4d = FMA(KP951056516, T4b, KP587785252 * T4c);
T4i = FNMS(KP587785252, T4b, KP951056516 * T4c);
ii[0] = T45 + T4a;
T4h = T4f - T4e;
ii[WS(rs, 8)] = T4h - T4i;
ii[WS(rs, 12)] = T4i + T4h;
T4g = T4e + T4f;
ii[WS(rs, 4)] = T4d + T4g;
ii[WS(rs, 16)] = T4g - T4d;
}
{
E T39, T37, T38, T2F, T3b, T2t, T2E, T3c, T3a;
T39 = KP559016994 * (T2V - T36);
T37 = T2V + T36;
T38 = FNMS(KP250000000, T37, T2K);
T2t = T2n - T2s;
T2E = T2y - T2D;
T2F = FNMS(KP587785252, T2E, KP951056516 * T2t);
T3b = FMA(KP951056516, T2E, KP587785252 * T2t);
ri[WS(rs, 15)] = T2K + T37;
T3c = T39 + T38;
ri[WS(rs, 11)] = T3b + T3c;
ri[WS(rs, 19)] = T3c - T3b;
T3a = T38 - T39;
ri[WS(rs, 3)] = T2F + T3a;
ri[WS(rs, 7)] = T3a - T2F;
}
{
E T4O, T4M, T4N, T4S, T4U, T4Q, T4R, T4T, T4P;
T4O = KP559016994 * (T4K - T4L);
T4M = T4K + T4L;
T4N = FNMS(KP250000000, T4M, T4J);
T4Q = T30 - T35;
T4R = T2P - T2U;
T4S = FNMS(KP587785252, T4R, KP951056516 * T4Q);
T4U = FMA(KP951056516, T4R, KP587785252 * T4Q);
ii[WS(rs, 15)] = T4M + T4J;
T4T = T4O + T4N;
ii[WS(rs, 11)] = T4T - T4U;
ii[WS(rs, 19)] = T4U + T4T;
T4P = T4N - T4O;
ii[WS(rs, 3)] = T4P - T4S;
ii[WS(rs, 7)] = T4S + T4P;
}
{
E T3q, T3s, T3t, T3j, T3v, T3f, T3i, T3w, T3u;
T3q = KP559016994 * (T3m - T3p);
T3s = T3m + T3p;
T3t = FNMS(KP250000000, T3s, T3r);
T3f = T3d - T3e;
T3i = T3g - T3h;
T3j = FMA(KP951056516, T3f, KP587785252 * T3i);
T3v = FNMS(KP587785252, T3f, KP951056516 * T3i);
ri[WS(rs, 5)] = T3r + T3s;
T3w = T3t - T3q;
ri[WS(rs, 13)] = T3v + T3w;
ri[WS(rs, 17)] = T3w - T3v;
T3u = T3q + T3t;
ri[WS(rs, 1)] = T3j + T3u;
ri[WS(rs, 9)] = T3u - T3j;
}
{
E T4x, T4B, T4C, T4G, T4I, T4E, T4F, T4H, T4D;
T4x = KP559016994 * (T4v - T4w);
T4B = T4v + T4w;
T4C = FNMS(KP250000000, T4B, T4A);
T4E = T3k - T3l;
T4F = T3n - T3o;
T4G = FMA(KP951056516, T4E, KP587785252 * T4F);
T4I = FNMS(KP587785252, T4E, KP951056516 * T4F);
ii[WS(rs, 5)] = T4B + T4A;
T4H = T4C - T4x;
ii[WS(rs, 13)] = T4H - T4I;
ii[WS(rs, 17)] = T4I + T4H;
T4D = T4x + T4C;
ii[WS(rs, 1)] = T4D - T4G;
ii[WS(rs, 9)] = T4G + T4D;
}
}
}
}
}
static const tw_instr twinstr[] = {
{ TW_CEXP, 0, 1 },
{ TW_CEXP, 0, 3 },
{ TW_CEXP, 0, 9 },
{ TW_CEXP, 0, 19 },
{ TW_NEXT, 1, 0 }
};
static const ct_desc desc = { 20, "t2_20", twinstr, &GENUS, { 204, 92, 72, 0 }, 0, 0, 0 };
void X(codelet_t2_20) (planner *p) {
X(kdft_dit_register) (p, t2_20, &desc);
}
#endif