furnace/extern/fftw/dft/scalar/codelets/q1_3.c
2022-05-31 03:24:29 -05:00

316 lines
9.1 KiB
C

/*
* Copyright (c) 2003, 2007-14 Matteo Frigo
* Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
*/
/* This file was automatically generated --- DO NOT EDIT */
/* Generated on Tue Sep 14 10:44:41 EDT 2021 */
#include "dft/codelet-dft.h"
#if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
/* Generated by: ../../../genfft/gen_twidsq.native -fma -compact -variables 4 -pipeline-latency 4 -reload-twiddle -dif -n 3 -name q1_3 -include dft/scalar/q.h */
/*
* This function contains 48 FP additions, 42 FP multiplications,
* (or, 18 additions, 12 multiplications, 30 fused multiply/add),
* 35 stack variables, 2 constants, and 36 memory accesses
*/
#include "dft/scalar/q.h"
static void q1_3(R *rio, R *iio, const R *W, stride rs, stride vs, INT mb, INT me, INT ms)
{
DK(KP866025403, +0.866025403784438646763723170752936183471402627);
DK(KP500000000, +0.500000000000000000000000000000000000000000000);
{
INT m;
for (m = mb, W = W + (mb * 4); m < me; m = m + 1, rio = rio + ms, iio = iio + ms, W = W + 4, MAKE_VOLATILE_STRIDE(6, rs), MAKE_VOLATILE_STRIDE(0, vs)) {
E T1, T4, T6, Tg, Td, Te, T9, Tf, Tp, Ts, Tu, TE, TB, TC, Tx;
E TD, TZ, T10, TV, T11, TN, TQ, TS, T12;
{
E T2, T3, Tv, Tw;
T1 = rio[0];
T2 = rio[WS(rs, 1)];
T3 = rio[WS(rs, 2)];
T4 = T2 + T3;
T6 = FNMS(KP500000000, T4, T1);
Tg = T3 - T2;
{
E T7, T8, Tq, Tr;
Td = iio[0];
T7 = iio[WS(rs, 1)];
T8 = iio[WS(rs, 2)];
Te = T7 + T8;
T9 = T7 - T8;
Tf = FNMS(KP500000000, Te, Td);
Tp = rio[WS(vs, 1)];
Tq = rio[WS(vs, 1) + WS(rs, 1)];
Tr = rio[WS(vs, 1) + WS(rs, 2)];
Ts = Tq + Tr;
Tu = FNMS(KP500000000, Ts, Tp);
TE = Tr - Tq;
}
TB = iio[WS(vs, 1)];
Tv = iio[WS(vs, 1) + WS(rs, 1)];
Tw = iio[WS(vs, 1) + WS(rs, 2)];
TC = Tv + Tw;
Tx = Tv - Tw;
TD = FNMS(KP500000000, TC, TB);
{
E TT, TU, TO, TP;
TZ = iio[WS(vs, 2)];
TT = iio[WS(vs, 2) + WS(rs, 1)];
TU = iio[WS(vs, 2) + WS(rs, 2)];
T10 = TT + TU;
TV = TT - TU;
T11 = FNMS(KP500000000, T10, TZ);
TN = rio[WS(vs, 2)];
TO = rio[WS(vs, 2) + WS(rs, 1)];
TP = rio[WS(vs, 2) + WS(rs, 2)];
TQ = TO + TP;
TS = FNMS(KP500000000, TQ, TN);
T12 = TP - TO;
}
}
rio[0] = T1 + T4;
iio[0] = Td + Te;
rio[WS(rs, 1)] = Tp + Ts;
iio[WS(rs, 1)] = TB + TC;
iio[WS(rs, 2)] = TZ + T10;
rio[WS(rs, 2)] = TN + TQ;
{
E Ta, Th, Tb, Ti, T5, Tc;
Ta = FMA(KP866025403, T9, T6);
Th = FMA(KP866025403, Tg, Tf);
T5 = W[0];
Tb = T5 * Ta;
Ti = T5 * Th;
Tc = W[1];
rio[WS(vs, 1)] = FMA(Tc, Th, Tb);
iio[WS(vs, 1)] = FNMS(Tc, Ta, Ti);
}
{
E T16, T19, T17, T1a, T15, T18;
T16 = FNMS(KP866025403, TV, TS);
T19 = FNMS(KP866025403, T12, T11);
T15 = W[2];
T17 = T15 * T16;
T1a = T15 * T19;
T18 = W[3];
rio[WS(vs, 2) + WS(rs, 2)] = FMA(T18, T19, T17);
iio[WS(vs, 2) + WS(rs, 2)] = FNMS(T18, T16, T1a);
}
{
E TI, TL, TJ, TM, TH, TK;
TI = FNMS(KP866025403, Tx, Tu);
TL = FNMS(KP866025403, TE, TD);
TH = W[2];
TJ = TH * TI;
TM = TH * TL;
TK = W[3];
rio[WS(vs, 2) + WS(rs, 1)] = FMA(TK, TL, TJ);
iio[WS(vs, 2) + WS(rs, 1)] = FNMS(TK, TI, TM);
}
{
E Ty, TF, Tz, TG, Tt, TA;
Ty = FMA(KP866025403, Tx, Tu);
TF = FMA(KP866025403, TE, TD);
Tt = W[0];
Tz = Tt * Ty;
TG = Tt * TF;
TA = W[1];
rio[WS(vs, 1) + WS(rs, 1)] = FMA(TA, TF, Tz);
iio[WS(vs, 1) + WS(rs, 1)] = FNMS(TA, Ty, TG);
}
{
E TW, T13, TX, T14, TR, TY;
TW = FMA(KP866025403, TV, TS);
T13 = FMA(KP866025403, T12, T11);
TR = W[0];
TX = TR * TW;
T14 = TR * T13;
TY = W[1];
rio[WS(vs, 1) + WS(rs, 2)] = FMA(TY, T13, TX);
iio[WS(vs, 1) + WS(rs, 2)] = FNMS(TY, TW, T14);
}
{
E Tk, Tn, Tl, To, Tj, Tm;
Tk = FNMS(KP866025403, T9, T6);
Tn = FNMS(KP866025403, Tg, Tf);
Tj = W[2];
Tl = Tj * Tk;
To = Tj * Tn;
Tm = W[3];
rio[WS(vs, 2)] = FMA(Tm, Tn, Tl);
iio[WS(vs, 2)] = FNMS(Tm, Tk, To);
}
}
}
}
static const tw_instr twinstr[] = {
{ TW_FULL, 0, 3 },
{ TW_NEXT, 1, 0 }
};
static const ct_desc desc = { 3, "q1_3", twinstr, &GENUS, { 18, 12, 30, 0 }, 0, 0, 0 };
void X(codelet_q1_3) (planner *p) {
X(kdft_difsq_register) (p, q1_3, &desc);
}
#else
/* Generated by: ../../../genfft/gen_twidsq.native -compact -variables 4 -pipeline-latency 4 -reload-twiddle -dif -n 3 -name q1_3 -include dft/scalar/q.h */
/*
* This function contains 48 FP additions, 36 FP multiplications,
* (or, 30 additions, 18 multiplications, 18 fused multiply/add),
* 35 stack variables, 2 constants, and 36 memory accesses
*/
#include "dft/scalar/q.h"
static void q1_3(R *rio, R *iio, const R *W, stride rs, stride vs, INT mb, INT me, INT ms)
{
DK(KP866025403, +0.866025403784438646763723170752936183471402627);
DK(KP500000000, +0.500000000000000000000000000000000000000000000);
{
INT m;
for (m = mb, W = W + (mb * 4); m < me; m = m + 1, rio = rio + ms, iio = iio + ms, W = W + 4, MAKE_VOLATILE_STRIDE(6, rs), MAKE_VOLATILE_STRIDE(0, vs)) {
E T1, T4, T6, Tc, Td, Te, T9, Tf, Tl, To, Tq, Tw, Tx, Ty, Tt;
E Tz, TR, TS, TN, TT, TF, TI, TK, TQ;
{
E T2, T3, Tr, Ts;
T1 = rio[0];
T2 = rio[WS(rs, 1)];
T3 = rio[WS(rs, 2)];
T4 = T2 + T3;
T6 = FNMS(KP500000000, T4, T1);
Tc = KP866025403 * (T3 - T2);
{
E T7, T8, Tm, Tn;
Td = iio[0];
T7 = iio[WS(rs, 1)];
T8 = iio[WS(rs, 2)];
Te = T7 + T8;
T9 = KP866025403 * (T7 - T8);
Tf = FNMS(KP500000000, Te, Td);
Tl = rio[WS(vs, 1)];
Tm = rio[WS(vs, 1) + WS(rs, 1)];
Tn = rio[WS(vs, 1) + WS(rs, 2)];
To = Tm + Tn;
Tq = FNMS(KP500000000, To, Tl);
Tw = KP866025403 * (Tn - Tm);
}
Tx = iio[WS(vs, 1)];
Tr = iio[WS(vs, 1) + WS(rs, 1)];
Ts = iio[WS(vs, 1) + WS(rs, 2)];
Ty = Tr + Ts;
Tt = KP866025403 * (Tr - Ts);
Tz = FNMS(KP500000000, Ty, Tx);
{
E TL, TM, TG, TH;
TR = iio[WS(vs, 2)];
TL = iio[WS(vs, 2) + WS(rs, 1)];
TM = iio[WS(vs, 2) + WS(rs, 2)];
TS = TL + TM;
TN = KP866025403 * (TL - TM);
TT = FNMS(KP500000000, TS, TR);
TF = rio[WS(vs, 2)];
TG = rio[WS(vs, 2) + WS(rs, 1)];
TH = rio[WS(vs, 2) + WS(rs, 2)];
TI = TG + TH;
TK = FNMS(KP500000000, TI, TF);
TQ = KP866025403 * (TH - TG);
}
}
rio[0] = T1 + T4;
iio[0] = Td + Te;
rio[WS(rs, 1)] = Tl + To;
iio[WS(rs, 1)] = Tx + Ty;
iio[WS(rs, 2)] = TR + TS;
rio[WS(rs, 2)] = TF + TI;
{
E Ta, Tg, T5, Tb;
Ta = T6 + T9;
Tg = Tc + Tf;
T5 = W[0];
Tb = W[1];
rio[WS(vs, 1)] = FMA(T5, Ta, Tb * Tg);
iio[WS(vs, 1)] = FNMS(Tb, Ta, T5 * Tg);
}
{
E TW, TY, TV, TX;
TW = TK - TN;
TY = TT - TQ;
TV = W[2];
TX = W[3];
rio[WS(vs, 2) + WS(rs, 2)] = FMA(TV, TW, TX * TY);
iio[WS(vs, 2) + WS(rs, 2)] = FNMS(TX, TW, TV * TY);
}
{
E TC, TE, TB, TD;
TC = Tq - Tt;
TE = Tz - Tw;
TB = W[2];
TD = W[3];
rio[WS(vs, 2) + WS(rs, 1)] = FMA(TB, TC, TD * TE);
iio[WS(vs, 2) + WS(rs, 1)] = FNMS(TD, TC, TB * TE);
}
{
E Tu, TA, Tp, Tv;
Tu = Tq + Tt;
TA = Tw + Tz;
Tp = W[0];
Tv = W[1];
rio[WS(vs, 1) + WS(rs, 1)] = FMA(Tp, Tu, Tv * TA);
iio[WS(vs, 1) + WS(rs, 1)] = FNMS(Tv, Tu, Tp * TA);
}
{
E TO, TU, TJ, TP;
TO = TK + TN;
TU = TQ + TT;
TJ = W[0];
TP = W[1];
rio[WS(vs, 1) + WS(rs, 2)] = FMA(TJ, TO, TP * TU);
iio[WS(vs, 1) + WS(rs, 2)] = FNMS(TP, TO, TJ * TU);
}
{
E Ti, Tk, Th, Tj;
Ti = T6 - T9;
Tk = Tf - Tc;
Th = W[2];
Tj = W[3];
rio[WS(vs, 2)] = FMA(Th, Ti, Tj * Tk);
iio[WS(vs, 2)] = FNMS(Tj, Ti, Th * Tk);
}
}
}
}
static const tw_instr twinstr[] = {
{ TW_FULL, 0, 3 },
{ TW_NEXT, 1, 0 }
};
static const ct_desc desc = { 3, "q1_3", twinstr, &GENUS, { 30, 18, 18, 0 }, 0, 0, 0 };
void X(codelet_q1_3) (planner *p) {
X(kdft_difsq_register) (p, q1_3, &desc);
}
#endif