furnace/extern/fftw/dft/indirect.c
2022-05-31 03:24:29 -05:00

240 lines
6.7 KiB
C

/*
* Copyright (c) 2003, 2007-14 Matteo Frigo
* Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
*/
/* solvers/plans for vectors of small DFT's that cannot be done
in-place directly. Use a rank-0 plan to rearrange the data
before or after the transform. Can also change an out-of-place
plan into a copy + in-place (where the in-place transform
is e.g. unit stride). */
/* FIXME: merge with rank-geq2.c(?), since this is just a special case
of a rank split where the first/second transform has rank 0. */
#include "dft/dft.h"
typedef problem *(*mkcld_t) (const problem_dft *p);
typedef struct {
dftapply apply;
problem *(*mkcld)(const problem_dft *p);
const char *nam;
} ndrct_adt;
typedef struct {
solver super;
const ndrct_adt *adt;
} S;
typedef struct {
plan_dft super;
plan *cldcpy, *cld;
const S *slv;
} P;
/*-----------------------------------------------------------------------*/
/* first rearrange, then transform */
static void apply_before(const plan *ego_, R *ri, R *ii, R *ro, R *io)
{
const P *ego = (const P *) ego_;
{
plan_dft *cldcpy = (plan_dft *) ego->cldcpy;
cldcpy->apply(ego->cldcpy, ri, ii, ro, io);
}
{
plan_dft *cld = (plan_dft *) ego->cld;
cld->apply(ego->cld, ro, io, ro, io);
}
}
static problem *mkcld_before(const problem_dft *p)
{
return X(mkproblem_dft_d)(X(tensor_copy_inplace)(p->sz, INPLACE_OS),
X(tensor_copy_inplace)(p->vecsz, INPLACE_OS),
p->ro, p->io, p->ro, p->io);
}
static const ndrct_adt adt_before =
{
apply_before, mkcld_before, "dft-indirect-before"
};
/*-----------------------------------------------------------------------*/
/* first transform, then rearrange */
static void apply_after(const plan *ego_, R *ri, R *ii, R *ro, R *io)
{
const P *ego = (const P *) ego_;
{
plan_dft *cld = (plan_dft *) ego->cld;
cld->apply(ego->cld, ri, ii, ri, ii);
}
{
plan_dft *cldcpy = (plan_dft *) ego->cldcpy;
cldcpy->apply(ego->cldcpy, ri, ii, ro, io);
}
}
static problem *mkcld_after(const problem_dft *p)
{
return X(mkproblem_dft_d)(X(tensor_copy_inplace)(p->sz, INPLACE_IS),
X(tensor_copy_inplace)(p->vecsz, INPLACE_IS),
p->ri, p->ii, p->ri, p->ii);
}
static const ndrct_adt adt_after =
{
apply_after, mkcld_after, "dft-indirect-after"
};
/*-----------------------------------------------------------------------*/
static void destroy(plan *ego_)
{
P *ego = (P *) ego_;
X(plan_destroy_internal)(ego->cld);
X(plan_destroy_internal)(ego->cldcpy);
}
static void awake(plan *ego_, enum wakefulness wakefulness)
{
P *ego = (P *) ego_;
X(plan_awake)(ego->cldcpy, wakefulness);
X(plan_awake)(ego->cld, wakefulness);
}
static void print(const plan *ego_, printer *p)
{
const P *ego = (const P *) ego_;
const S *s = ego->slv;
p->print(p, "(%s%(%p%)%(%p%))", s->adt->nam, ego->cld, ego->cldcpy);
}
static int applicable0(const solver *ego_, const problem *p_,
const planner *plnr)
{
const S *ego = (const S *) ego_;
const problem_dft *p = (const problem_dft *) p_;
return (1
&& FINITE_RNK(p->vecsz->rnk)
/* problem must be a nontrivial transform, not just a copy */
&& p->sz->rnk > 0
&& (0
/* problem must be in-place & require some
rearrangement of the data; to prevent
infinite loops with indirect-transpose, we
further require that at least some transform
strides must decrease */
|| (p->ri == p->ro
&& !X(tensor_inplace_strides2)(p->sz, p->vecsz)
&& X(tensor_strides_decrease)(
p->sz, p->vecsz,
ego->adt->apply == apply_after ?
INPLACE_IS : INPLACE_OS))
/* or problem must be out of place, transforming
from stride 1/2 to bigger stride, for apply_after */
|| (p->ri != p->ro && ego->adt->apply == apply_after
&& !NO_DESTROY_INPUTP(plnr)
&& X(tensor_min_istride)(p->sz) <= 2
&& X(tensor_min_ostride)(p->sz) > 2)
/* or problem must be out of place, transforming
to stride 1/2 from bigger stride, for apply_before */
|| (p->ri != p->ro && ego->adt->apply == apply_before
&& X(tensor_min_ostride)(p->sz) <= 2
&& X(tensor_min_istride)(p->sz) > 2)
)
);
}
static int applicable(const solver *ego_, const problem *p_,
const planner *plnr)
{
if (!applicable0(ego_, p_, plnr)) return 0;
{
const problem_dft *p = (const problem_dft *) p_;
if (NO_INDIRECT_OP_P(plnr) && p->ri != p->ro) return 0;
}
return 1;
}
static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr)
{
const problem_dft *p = (const problem_dft *) p_;
const S *ego = (const S *) ego_;
P *pln;
plan *cld = 0, *cldcpy = 0;
static const plan_adt padt = {
X(dft_solve), awake, print, destroy
};
if (!applicable(ego_, p_, plnr))
return (plan *) 0;
cldcpy =
X(mkplan_d)(plnr,
X(mkproblem_dft_d)(X(mktensor_0d)(),
X(tensor_append)(p->vecsz, p->sz),
p->ri, p->ii, p->ro, p->io));
if (!cldcpy) goto nada;
cld = X(mkplan_f_d)(plnr, ego->adt->mkcld(p), NO_BUFFERING, 0, 0);
if (!cld) goto nada;
pln = MKPLAN_DFT(P, &padt, ego->adt->apply);
pln->cld = cld;
pln->cldcpy = cldcpy;
pln->slv = ego;
X(ops_add)(&cld->ops, &cldcpy->ops, &pln->super.super.ops);
return &(pln->super.super);
nada:
X(plan_destroy_internal)(cld);
X(plan_destroy_internal)(cldcpy);
return (plan *)0;
}
static solver *mksolver(const ndrct_adt *adt)
{
static const solver_adt sadt = { PROBLEM_DFT, mkplan, 0 };
S *slv = MKSOLVER(S, &sadt);
slv->adt = adt;
return &(slv->super);
}
void X(dft_indirect_register)(planner *p)
{
unsigned i;
static const ndrct_adt *const adts[] = {
&adt_before, &adt_after
};
for (i = 0; i < sizeof(adts) / sizeof(adts[0]); ++i)
REGISTER_SOLVER(p, mksolver(adts[i]));
}