furnace/extern/fftw/rdft/generic.c
2022-05-31 03:24:29 -05:00

232 lines
5.4 KiB
C

/*
* Copyright (c) 2003, 2007-14 Matteo Frigo
* Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
*/
#include "rdft/rdft.h"
typedef struct {
solver super;
rdft_kind kind;
} S;
typedef struct {
plan_rdft super;
twid *td;
INT n, is, os;
rdft_kind kind;
} P;
/***************************************************************************/
static void cdot_r2hc(INT n, const E *x, const R *w, R *or0, R *oi1)
{
INT i;
E rr = x[0], ri = 0;
x += 1;
for (i = 1; i + i < n; ++i) {
rr += x[0] * w[0];
ri += x[1] * w[1];
x += 2; w += 2;
}
*or0 = rr;
*oi1 = ri;
}
static void hartley_r2hc(INT n, const R *xr, INT xs, E *o, R *pr)
{
INT i;
E sr;
o[0] = sr = xr[0]; o += 1;
for (i = 1; i + i < n; ++i) {
R a, b;
a = xr[i * xs];
b = xr[(n - i) * xs];
sr += (o[0] = a + b);
#if FFT_SIGN == -1
o[1] = b - a;
#else
o[1] = a - b;
#endif
o += 2;
}
*pr = sr;
}
static void apply_r2hc(const plan *ego_, R *I, R *O)
{
const P *ego = (const P *) ego_;
INT i;
INT n = ego->n, is = ego->is, os = ego->os;
const R *W = ego->td->W;
E *buf;
size_t bufsz = n * sizeof(E);
BUF_ALLOC(E *, buf, bufsz);
hartley_r2hc(n, I, is, buf, O);
for (i = 1; i + i < n; ++i) {
cdot_r2hc(n, buf, W, O + i * os, O + (n - i) * os);
W += n - 1;
}
BUF_FREE(buf, bufsz);
}
static void cdot_hc2r(INT n, const E *x, const R *w, R *or0, R *or1)
{
INT i;
E rr = x[0], ii = 0;
x += 1;
for (i = 1; i + i < n; ++i) {
rr += x[0] * w[0];
ii += x[1] * w[1];
x += 2; w += 2;
}
#if FFT_SIGN == -1
*or0 = rr - ii;
*or1 = rr + ii;
#else
*or0 = rr + ii;
*or1 = rr - ii;
#endif
}
static void hartley_hc2r(INT n, const R *x, INT xs, E *o, R *pr)
{
INT i;
E sr;
o[0] = sr = x[0]; o += 1;
for (i = 1; i + i < n; ++i) {
sr += (o[0] = x[i * xs] + x[i * xs]);
o[1] = x[(n - i) * xs] + x[(n - i) * xs];
o += 2;
}
*pr = sr;
}
static void apply_hc2r(const plan *ego_, R *I, R *O)
{
const P *ego = (const P *) ego_;
INT i;
INT n = ego->n, is = ego->is, os = ego->os;
const R *W = ego->td->W;
E *buf;
size_t bufsz = n * sizeof(E);
BUF_ALLOC(E *, buf, bufsz);
hartley_hc2r(n, I, is, buf, O);
for (i = 1; i + i < n; ++i) {
cdot_hc2r(n, buf, W, O + i * os, O + (n - i) * os);
W += n - 1;
}
BUF_FREE(buf, bufsz);
}
/***************************************************************************/
static void awake(plan *ego_, enum wakefulness wakefulness)
{
P *ego = (P *) ego_;
static const tw_instr half_tw[] = {
{ TW_HALF, 1, 0 },
{ TW_NEXT, 1, 0 }
};
X(twiddle_awake)(wakefulness, &ego->td, half_tw, ego->n, ego->n,
(ego->n - 1) / 2);
}
static void print(const plan *ego_, printer *p)
{
const P *ego = (const P *) ego_;
p->print(p, "(rdft-generic-%s-%D)",
ego->kind == R2HC ? "r2hc" : "hc2r",
ego->n);
}
static int applicable(const S *ego, const problem *p_,
const planner *plnr)
{
const problem_rdft *p = (const problem_rdft *) p_;
return (1
&& p->sz->rnk == 1
&& p->vecsz->rnk == 0
&& (p->sz->dims[0].n % 2) == 1
&& CIMPLIES(NO_LARGE_GENERICP(plnr), p->sz->dims[0].n < GENERIC_MIN_BAD)
&& CIMPLIES(NO_SLOWP(plnr), p->sz->dims[0].n > GENERIC_MAX_SLOW)
&& X(is_prime)(p->sz->dims[0].n)
&& p->kind[0] == ego->kind
);
}
static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr)
{
const S *ego = (const S *)ego_;
const problem_rdft *p;
P *pln;
INT n;
static const plan_adt padt = {
X(rdft_solve), awake, print, X(plan_null_destroy)
};
if (!applicable(ego, p_, plnr))
return (plan *)0;
p = (const problem_rdft *) p_;
pln = MKPLAN_RDFT(P, &padt,
R2HC_KINDP(p->kind[0]) ? apply_r2hc : apply_hc2r);
pln->n = n = p->sz->dims[0].n;
pln->is = p->sz->dims[0].is;
pln->os = p->sz->dims[0].os;
pln->td = 0;
pln->kind = ego->kind;
pln->super.super.ops.add = (n-1) * 2.5;
pln->super.super.ops.mul = 0;
pln->super.super.ops.fma = 0.5 * (n-1) * (n-1) ;
#if 0 /* these are nice pipelined sequential loads and should cost nothing */
pln->super.super.ops.other = (n-1)*(2 + 1 + (n-1)); /* approximate */
#endif
return &(pln->super.super);
}
static solver *mksolver(rdft_kind kind)
{
static const solver_adt sadt = { PROBLEM_RDFT, mkplan, 0 };
S *slv = MKSOLVER(S, &sadt);
slv->kind = kind;
return &(slv->super);
}
void X(rdft_generic_register)(planner *p)
{
REGISTER_SOLVER(p, mksolver(R2HC));
REGISTER_SOLVER(p, mksolver(HC2R));
}