furnace/extern/fftw/dft/simd/common/q1fv_4.c
2022-05-31 03:24:29 -05:00

262 lines
9.7 KiB
C

/*
* Copyright (c) 2003, 2007-14 Matteo Frigo
* Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
*/
/* This file was automatically generated --- DO NOT EDIT */
/* Generated on Tue Sep 14 10:46:00 EDT 2021 */
#include "dft/codelet-dft.h"
#if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
/* Generated by: ../../../genfft/gen_twidsq_c.native -fma -simd -compact -variables 4 -pipeline-latency 8 -n 4 -dif -name q1fv_4 -include dft/simd/q1f.h */
/*
* This function contains 44 FP additions, 32 FP multiplications,
* (or, 36 additions, 24 multiplications, 8 fused multiply/add),
* 22 stack variables, 0 constants, and 32 memory accesses
*/
#include "dft/simd/q1f.h"
static void q1fv_4(R *ri, R *ii, const R *W, stride rs, stride vs, INT mb, INT me, INT ms)
{
{
INT m;
R *x;
x = ri;
for (m = mb, W = W + (mb * ((TWVL / VL) * 6)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 6), MAKE_VOLATILE_STRIDE(8, rs), MAKE_VOLATILE_STRIDE(8, vs)) {
V T3, T9, TA, TG, TD, TH, T6, Ta, Te, Tk, Tp, Tv, Ts, Tw, Th;
V Tl;
{
V T1, T2, Ty, Tz;
T1 = LD(&(x[0]), ms, &(x[0]));
T2 = LD(&(x[WS(rs, 2)]), ms, &(x[0]));
T3 = VSUB(T1, T2);
T9 = VADD(T1, T2);
Ty = LD(&(x[WS(vs, 3)]), ms, &(x[WS(vs, 3)]));
Tz = LD(&(x[WS(vs, 3) + WS(rs, 2)]), ms, &(x[WS(vs, 3)]));
TA = VSUB(Ty, Tz);
TG = VADD(Ty, Tz);
}
{
V TB, TC, T4, T5;
TB = LD(&(x[WS(vs, 3) + WS(rs, 1)]), ms, &(x[WS(vs, 3) + WS(rs, 1)]));
TC = LD(&(x[WS(vs, 3) + WS(rs, 3)]), ms, &(x[WS(vs, 3) + WS(rs, 1)]));
TD = VSUB(TB, TC);
TH = VADD(TB, TC);
T4 = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)]));
T5 = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)]));
T6 = VSUB(T4, T5);
Ta = VADD(T4, T5);
}
{
V Tc, Td, Tn, To;
Tc = LD(&(x[WS(vs, 1)]), ms, &(x[WS(vs, 1)]));
Td = LD(&(x[WS(vs, 1) + WS(rs, 2)]), ms, &(x[WS(vs, 1)]));
Te = VSUB(Tc, Td);
Tk = VADD(Tc, Td);
Tn = LD(&(x[WS(vs, 2)]), ms, &(x[WS(vs, 2)]));
To = LD(&(x[WS(vs, 2) + WS(rs, 2)]), ms, &(x[WS(vs, 2)]));
Tp = VSUB(Tn, To);
Tv = VADD(Tn, To);
}
{
V Tq, Tr, Tf, Tg;
Tq = LD(&(x[WS(vs, 2) + WS(rs, 1)]), ms, &(x[WS(vs, 2) + WS(rs, 1)]));
Tr = LD(&(x[WS(vs, 2) + WS(rs, 3)]), ms, &(x[WS(vs, 2) + WS(rs, 1)]));
Ts = VSUB(Tq, Tr);
Tw = VADD(Tq, Tr);
Tf = LD(&(x[WS(vs, 1) + WS(rs, 1)]), ms, &(x[WS(vs, 1) + WS(rs, 1)]));
Tg = LD(&(x[WS(vs, 1) + WS(rs, 3)]), ms, &(x[WS(vs, 1) + WS(rs, 1)]));
Th = VSUB(Tf, Tg);
Tl = VADD(Tf, Tg);
}
ST(&(x[0]), VADD(T9, Ta), ms, &(x[0]));
ST(&(x[WS(rs, 1)]), VADD(Tk, Tl), ms, &(x[WS(rs, 1)]));
ST(&(x[WS(rs, 2)]), VADD(Tv, Tw), ms, &(x[0]));
ST(&(x[WS(rs, 3)]), VADD(TG, TH), ms, &(x[WS(rs, 1)]));
{
V T7, Ti, Tt, TE;
T7 = BYTWJ(&(W[0]), VFNMSI(T6, T3));
ST(&(x[WS(vs, 1)]), T7, ms, &(x[WS(vs, 1)]));
Ti = BYTWJ(&(W[0]), VFNMSI(Th, Te));
ST(&(x[WS(vs, 1) + WS(rs, 1)]), Ti, ms, &(x[WS(vs, 1) + WS(rs, 1)]));
Tt = BYTWJ(&(W[0]), VFNMSI(Ts, Tp));
ST(&(x[WS(vs, 1) + WS(rs, 2)]), Tt, ms, &(x[WS(vs, 1)]));
TE = BYTWJ(&(W[0]), VFNMSI(TD, TA));
ST(&(x[WS(vs, 1) + WS(rs, 3)]), TE, ms, &(x[WS(vs, 1) + WS(rs, 1)]));
}
{
V T8, Tj, Tu, TF;
T8 = BYTWJ(&(W[TWVL * 4]), VFMAI(T6, T3));
ST(&(x[WS(vs, 3)]), T8, ms, &(x[WS(vs, 3)]));
Tj = BYTWJ(&(W[TWVL * 4]), VFMAI(Th, Te));
ST(&(x[WS(vs, 3) + WS(rs, 1)]), Tj, ms, &(x[WS(vs, 3) + WS(rs, 1)]));
Tu = BYTWJ(&(W[TWVL * 4]), VFMAI(Ts, Tp));
ST(&(x[WS(vs, 3) + WS(rs, 2)]), Tu, ms, &(x[WS(vs, 3)]));
TF = BYTWJ(&(W[TWVL * 4]), VFMAI(TD, TA));
ST(&(x[WS(vs, 3) + WS(rs, 3)]), TF, ms, &(x[WS(vs, 3) + WS(rs, 1)]));
}
{
V Tb, Tm, Tx, TI;
Tb = BYTWJ(&(W[TWVL * 2]), VSUB(T9, Ta));
ST(&(x[WS(vs, 2)]), Tb, ms, &(x[WS(vs, 2)]));
Tm = BYTWJ(&(W[TWVL * 2]), VSUB(Tk, Tl));
ST(&(x[WS(vs, 2) + WS(rs, 1)]), Tm, ms, &(x[WS(vs, 2) + WS(rs, 1)]));
Tx = BYTWJ(&(W[TWVL * 2]), VSUB(Tv, Tw));
ST(&(x[WS(vs, 2) + WS(rs, 2)]), Tx, ms, &(x[WS(vs, 2)]));
TI = BYTWJ(&(W[TWVL * 2]), VSUB(TG, TH));
ST(&(x[WS(vs, 2) + WS(rs, 3)]), TI, ms, &(x[WS(vs, 2) + WS(rs, 1)]));
}
}
}
VLEAVE();
}
static const tw_instr twinstr[] = {
VTW(0, 1),
VTW(0, 2),
VTW(0, 3),
{ TW_NEXT, VL, 0 }
};
static const ct_desc desc = { 4, XSIMD_STRING("q1fv_4"), twinstr, &GENUS, { 36, 24, 8, 0 }, 0, 0, 0 };
void XSIMD(codelet_q1fv_4) (planner *p) {
X(kdft_difsq_register) (p, q1fv_4, &desc);
}
#else
/* Generated by: ../../../genfft/gen_twidsq_c.native -simd -compact -variables 4 -pipeline-latency 8 -n 4 -dif -name q1fv_4 -include dft/simd/q1f.h */
/*
* This function contains 44 FP additions, 24 FP multiplications,
* (or, 44 additions, 24 multiplications, 0 fused multiply/add),
* 22 stack variables, 0 constants, and 32 memory accesses
*/
#include "dft/simd/q1f.h"
static void q1fv_4(R *ri, R *ii, const R *W, stride rs, stride vs, INT mb, INT me, INT ms)
{
{
INT m;
R *x;
x = ri;
for (m = mb, W = W + (mb * ((TWVL / VL) * 6)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 6), MAKE_VOLATILE_STRIDE(8, rs), MAKE_VOLATILE_STRIDE(8, vs)) {
V T3, T9, TA, TG, TD, TH, T6, Ta, Te, Tk, Tp, Tv, Ts, Tw, Th;
V Tl;
{
V T1, T2, Ty, Tz;
T1 = LD(&(x[0]), ms, &(x[0]));
T2 = LD(&(x[WS(rs, 2)]), ms, &(x[0]));
T3 = VSUB(T1, T2);
T9 = VADD(T1, T2);
Ty = LD(&(x[WS(vs, 3)]), ms, &(x[WS(vs, 3)]));
Tz = LD(&(x[WS(vs, 3) + WS(rs, 2)]), ms, &(x[WS(vs, 3)]));
TA = VSUB(Ty, Tz);
TG = VADD(Ty, Tz);
}
{
V TB, TC, T4, T5;
TB = LD(&(x[WS(vs, 3) + WS(rs, 1)]), ms, &(x[WS(vs, 3) + WS(rs, 1)]));
TC = LD(&(x[WS(vs, 3) + WS(rs, 3)]), ms, &(x[WS(vs, 3) + WS(rs, 1)]));
TD = VBYI(VSUB(TB, TC));
TH = VADD(TB, TC);
T4 = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)]));
T5 = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)]));
T6 = VBYI(VSUB(T4, T5));
Ta = VADD(T4, T5);
}
{
V Tc, Td, Tn, To;
Tc = LD(&(x[WS(vs, 1)]), ms, &(x[WS(vs, 1)]));
Td = LD(&(x[WS(vs, 1) + WS(rs, 2)]), ms, &(x[WS(vs, 1)]));
Te = VSUB(Tc, Td);
Tk = VADD(Tc, Td);
Tn = LD(&(x[WS(vs, 2)]), ms, &(x[WS(vs, 2)]));
To = LD(&(x[WS(vs, 2) + WS(rs, 2)]), ms, &(x[WS(vs, 2)]));
Tp = VSUB(Tn, To);
Tv = VADD(Tn, To);
}
{
V Tq, Tr, Tf, Tg;
Tq = LD(&(x[WS(vs, 2) + WS(rs, 1)]), ms, &(x[WS(vs, 2) + WS(rs, 1)]));
Tr = LD(&(x[WS(vs, 2) + WS(rs, 3)]), ms, &(x[WS(vs, 2) + WS(rs, 1)]));
Ts = VBYI(VSUB(Tq, Tr));
Tw = VADD(Tq, Tr);
Tf = LD(&(x[WS(vs, 1) + WS(rs, 1)]), ms, &(x[WS(vs, 1) + WS(rs, 1)]));
Tg = LD(&(x[WS(vs, 1) + WS(rs, 3)]), ms, &(x[WS(vs, 1) + WS(rs, 1)]));
Th = VBYI(VSUB(Tf, Tg));
Tl = VADD(Tf, Tg);
}
ST(&(x[0]), VADD(T9, Ta), ms, &(x[0]));
ST(&(x[WS(rs, 1)]), VADD(Tk, Tl), ms, &(x[WS(rs, 1)]));
ST(&(x[WS(rs, 2)]), VADD(Tv, Tw), ms, &(x[0]));
ST(&(x[WS(rs, 3)]), VADD(TG, TH), ms, &(x[WS(rs, 1)]));
{
V T7, Ti, Tt, TE;
T7 = BYTWJ(&(W[0]), VSUB(T3, T6));
ST(&(x[WS(vs, 1)]), T7, ms, &(x[WS(vs, 1)]));
Ti = BYTWJ(&(W[0]), VSUB(Te, Th));
ST(&(x[WS(vs, 1) + WS(rs, 1)]), Ti, ms, &(x[WS(vs, 1) + WS(rs, 1)]));
Tt = BYTWJ(&(W[0]), VSUB(Tp, Ts));
ST(&(x[WS(vs, 1) + WS(rs, 2)]), Tt, ms, &(x[WS(vs, 1)]));
TE = BYTWJ(&(W[0]), VSUB(TA, TD));
ST(&(x[WS(vs, 1) + WS(rs, 3)]), TE, ms, &(x[WS(vs, 1) + WS(rs, 1)]));
}
{
V T8, Tj, Tu, TF;
T8 = BYTWJ(&(W[TWVL * 4]), VADD(T3, T6));
ST(&(x[WS(vs, 3)]), T8, ms, &(x[WS(vs, 3)]));
Tj = BYTWJ(&(W[TWVL * 4]), VADD(Te, Th));
ST(&(x[WS(vs, 3) + WS(rs, 1)]), Tj, ms, &(x[WS(vs, 3) + WS(rs, 1)]));
Tu = BYTWJ(&(W[TWVL * 4]), VADD(Tp, Ts));
ST(&(x[WS(vs, 3) + WS(rs, 2)]), Tu, ms, &(x[WS(vs, 3)]));
TF = BYTWJ(&(W[TWVL * 4]), VADD(TA, TD));
ST(&(x[WS(vs, 3) + WS(rs, 3)]), TF, ms, &(x[WS(vs, 3) + WS(rs, 1)]));
}
{
V Tb, Tm, Tx, TI;
Tb = BYTWJ(&(W[TWVL * 2]), VSUB(T9, Ta));
ST(&(x[WS(vs, 2)]), Tb, ms, &(x[WS(vs, 2)]));
Tm = BYTWJ(&(W[TWVL * 2]), VSUB(Tk, Tl));
ST(&(x[WS(vs, 2) + WS(rs, 1)]), Tm, ms, &(x[WS(vs, 2) + WS(rs, 1)]));
Tx = BYTWJ(&(W[TWVL * 2]), VSUB(Tv, Tw));
ST(&(x[WS(vs, 2) + WS(rs, 2)]), Tx, ms, &(x[WS(vs, 2)]));
TI = BYTWJ(&(W[TWVL * 2]), VSUB(TG, TH));
ST(&(x[WS(vs, 2) + WS(rs, 3)]), TI, ms, &(x[WS(vs, 2) + WS(rs, 1)]));
}
}
}
VLEAVE();
}
static const tw_instr twinstr[] = {
VTW(0, 1),
VTW(0, 2),
VTW(0, 3),
{ TW_NEXT, VL, 0 }
};
static const ct_desc desc = { 4, XSIMD_STRING("q1fv_4"), twinstr, &GENUS, { 44, 24, 0, 0 }, 0, 0, 0 };
void XSIMD(codelet_q1fv_4) (planner *p) {
X(kdft_difsq_register) (p, q1fv_4, &desc);
}
#endif