furnace/src/engine/platform/vera.cpp

538 lines
16 KiB
C++

/**
* Furnace Tracker - multi-system chiptune tracker
* Copyright (C) 2021-2023 tildearrow and contributors
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/
#include "vera.h"
#include "../engine.h"
#include <string.h>
#include <math.h>
extern "C" {
#include "sound/vera_psg.h"
#include "sound/vera_pcm.h"
}
//if (dumpWrites) {addWrite(((c)*4+(a)),(d));}
//#define rWrite(c,a,d) {regPool[(c)*4+(a)]=(d); psg_writereg(psg,((c)*4+(a)),(d));}
#define rWrite(c,a,d) {regPool[(c)*4+(a)]=(d); psg_writereg(psg,((c)*4+(a)),(d));if (dumpWrites) {addWrite(((c)*4+(a)),(d));}}
#define rWriteLo(c,a,d) rWrite(c,a,(regPool[(c)*4+(a)]&(~0x3f))|((d)&0x3f))
#define rWriteHi(c,a,d) rWrite(c,a,(regPool[(c)*4+(a)]&(~0xc0))|(((d)<<6)&0xc0))
#define rWritePCMCtrl(d) {regPool[64]=(d); pcm_write_ctrl(pcm,d);if (dumpWrites) addWrite(64,(d));}
#define rWritePCMRate(d) {regPool[65]=(d); pcm_write_rate(pcm,d);if (dumpWrites) addWrite(65,(d));}
#define rWritePCMData(d) {regPool[66]=(d); pcm_write_fifo(pcm,d);}
#define rWritePCMVol(d) rWritePCMCtrl((regPool[64]&(~0x8f))|((d)&15))
#define rWriteZSMSync(d) {if (dumpWrites) addWrite(68,(d));}
const char* regCheatSheetVERA[]={
"CHxFreq", "00+x*4",
"CHxVol", "02+x*4",
"CHxWave", "03+x*4",
"AUDIO_CTRL", "40",
"AUDIO_RATE", "41",
"AUDIO_DATA", "42",
"ZSM_PCM_LOOP_POINT", "43",
"ZSM_SYNC", "44",
NULL
};
const char** DivPlatformVERA::getRegisterSheet() {
return regCheatSheetVERA;
}
void DivPlatformVERA::acquire(short** buf, size_t len) {
// both PSG part and PCM part output a full 16-bit range, putting bufL/R
// argument right into both could cause an overflow
short whyCallItBuf[4][128];
size_t pos=0;
DivSample* s=parent->getSample(chan[16].pcm.sample);
while (len>0) {
if (s->samples>0) {
while (pcm_is_fifo_almost_empty(pcm)) {
short tmp_l=0;
short tmp_r=0;
if (!isMuted[16]) {
// TODO stereo samples once DivSample has a support for it
if (chan[16].pcm.depth16) {
tmp_l=s->data16[chan[16].pcm.pos];
tmp_r=tmp_l;
} else {
tmp_l=s->data8[chan[16].pcm.pos];
tmp_r=tmp_l;
}
if (!(chan[16].pan&1)) tmp_l=0;
if (!(chan[16].pan&2)) tmp_r=0;
}
if (chan[16].pcm.depth16) {
rWritePCMData(tmp_l&0xff);
rWritePCMData((tmp_l>>8)&0xff);
rWritePCMData(tmp_r&0xff);
rWritePCMData((tmp_r>>8)&0xff);
} else {
rWritePCMData(tmp_l&0xff);
rWritePCMData(tmp_r&0xff);
}
chan[16].pcm.pos++;
if (s->isLoopable() && chan[16].pcm.pos>=(unsigned int)s->loopEnd) {
chan[16].pcm.pos=s->loopStart;
} else if (chan[16].pcm.pos>=s->samples) {
chan[16].pcm.sample=-1;
break;
}
}
} else {
// just let the buffer run out
chan[16].pcm.sample=-1;
}
int curLen=MIN(len,128);
memset(whyCallItBuf,0,sizeof(whyCallItBuf));
pcm_render(pcm,whyCallItBuf[2],whyCallItBuf[3],curLen);
for (int i=0; i<curLen; i++) {
psg_render(psg,&whyCallItBuf[0][i],&whyCallItBuf[1][i],1);
buf[0][pos]=(short)(((int)whyCallItBuf[0][i]+whyCallItBuf[2][i])/2);
buf[1][pos]=(short)(((int)whyCallItBuf[1][i]+whyCallItBuf[3][i])/2);
pos++;
for (int i=0; i<16; i++) {
oscBuf[i]->data[oscBuf[i]->needle++]=psg->channels[i].lastOut<<3;
}
int pcmOut=(whyCallItBuf[2][i]+whyCallItBuf[3][i])>>1;
if (pcmOut<-32768) pcmOut=-32768;
if (pcmOut>32767) pcmOut=32767;
oscBuf[16]->data[oscBuf[16]->needle++]=pcmOut;
}
len-=curLen;
}
}
void DivPlatformVERA::reset() {
for (int i=0; i<17; i++) {
chan[i]=Channel();
chan[i].std.setEngine(parent);
}
psg_reset(psg);
pcm_reset(pcm);
memset(regPool,0,67);
for (int i=0; i<16; i++) {
chan[i].vol=63;
chan[i].pan=3;
rWriteHi(i,2,isMuted[i]?0:3);
}
chan[16].vol=15;
chan[16].pan=3;
}
int DivPlatformVERA::calcNoteFreq(int ch, int note) {
if (ch<16) {
return parent->calcBaseFreq(chipClock,2097152,note,false);
} else {
double off=65536.0;
if (chan[ch].pcm.sample>=0 && chan[ch].pcm.sample<parent->song.sampleLen) {
DivSample* s=parent->getSample(chan[ch].pcm.sample);
if (s->centerRate<1) {
off=65536.0;
} else {
off=65536.0*(s->centerRate/8363.0);
}
}
return (int)(parent->calcBaseFreq(chipClock,off,note,false));
}
}
void DivPlatformVERA::tick(bool sysTick) {
for (int i=0; i<16; i++) {
chan[i].std.next();
if (chan[i].std.vol.had) {
chan[i].outVol=MAX(chan[i].vol+chan[i].std.vol.val-63,0);
rWriteLo(i,2,chan[i].outVol);
}
if (NEW_ARP_STRAT) {
chan[i].handleArp();
} else if (chan[i].std.arp.had) {
if (!chan[i].inPorta) {
chan[i].baseFreq=calcNoteFreq(0,parent->calcArp(chan[i].note,chan[i].std.arp.val));
}
chan[i].freqChanged=true;
}
if (chan[i].std.duty.had) {
rWriteLo(i,3,chan[i].std.duty.val);
}
if (chan[i].std.wave.had) {
rWriteHi(i,3,chan[i].std.wave.val);
}
if (i<16) {
if (chan[i].std.panL.had) {
chan[i].pan=chan[i].std.panL.val&3;
chan[i].pan=((chan[i].pan&1)<<1)|((chan[i].pan&2)>>1);
rWriteHi(i,2,isMuted[i]?0:chan[i].pan);
}
}
if (chan[i].std.pitch.had) {
if (chan[i].std.pitch.mode) {
chan[i].pitch2+=chan[i].std.pitch.val;
CLAMP_VAR(chan[i].pitch2,-32768,32767);
} else {
chan[i].pitch2=chan[i].std.pitch.val;
}
chan[i].freqChanged=true;
}
if (chan[i].freqChanged) {
chan[i].freq=parent->calcFreq(chan[i].baseFreq,chan[i].pitch,chan[i].fixedArp?chan[i].baseNoteOverride:chan[i].arpOff,chan[i].fixedArp,false,8,chan[i].pitch2,chipClock,2097152);
if (chan[i].freq>65535) chan[i].freq=65535;
rWrite(i,0,chan[i].freq&0xff);
rWrite(i,1,(chan[i].freq>>8)&0xff);
chan[i].freqChanged=false;
}
}
// PCM
chan[16].std.next();
if (chan[16].std.vol.had) {
chan[16].outVol=MAX(chan[16].vol+MIN(chan[16].std.vol.val/4,15)-15,0);
rWritePCMVol(chan[16].outVol&15);
}
if (NEW_ARP_STRAT) {
chan[16].handleArp();
} else if (chan[16].std.arp.had) {
if (!chan[16].inPorta) {
chan[16].baseFreq=calcNoteFreq(16,parent->calcArp(chan[16].note,chan[16].std.arp.val));
}
chan[16].freqChanged=true;
}
if (chan[16].freqChanged) {
double off=65536.0;
if (chan[16].pcm.sample>=0 && chan[16].pcm.sample<parent->song.sampleLen) {
DivSample* s=parent->getSample(chan[16].pcm.sample);
if (s->centerRate<1) {
off=65536.0;
} else {
off=65536.0*(s->centerRate/8363.0);
}
}
chan[16].freq=parent->calcFreq(chan[16].baseFreq,chan[16].pitch,chan[16].fixedArp?chan[16].baseNoteOverride:chan[16].arpOff,chan[16].fixedArp,false,8,chan[16].pitch2,chipClock,off);
if (chan[16].freq>128) chan[16].freq=128;
rWritePCMRate(chan[16].freq&0xff);
chan[16].freqChanged=false;
}
// For export, output the entire sample that starts on this tick
if (dumpWrites) {
DivSample* s=parent->getSample(chan[16].pcm.sample);
if (s->samples>0) {
if (s->isLoopable()) {
// Inform the export process of the loop point for this sample
int tmp_ls=(s->loopStart<<1); // for stereo
if (chan[16].pcm.depth16)
tmp_ls<<=1; // for 16 bit
addWrite(67,tmp_ls&0xff);
addWrite(67,(tmp_ls>>8)&0xff);
addWrite(67,(tmp_ls>>16)&0xff);
}
while (true) {
short tmp_l=0;
short tmp_r=0;
if (!isMuted[16]) {
if (chan[16].pcm.depth16) {
tmp_l=s->data16[chan[16].pcm.pos];
tmp_r=tmp_l;
} else {
tmp_l=s->data8[chan[16].pcm.pos];
tmp_r=tmp_l;
}
if (!(chan[16].pan&1)) tmp_l=0;
if (!(chan[16].pan&2)) tmp_r=0;
}
if (chan[16].pcm.depth16) {
addWrite(66,tmp_l&0xff);
addWrite(66,(tmp_l>>8)&0xff);
addWrite(66,tmp_r&0xff);
addWrite(66,(tmp_r>>8)&0xff);
} else {
addWrite(66,tmp_l&0xff);
addWrite(66,tmp_r&0xff);
}
chan[16].pcm.pos++;
if (s->isLoopable() && chan[16].pcm.pos>=(unsigned int)s->loopEnd) {
chan[16].pcm.sample=-1;
break;
}
if (chan[16].pcm.pos>=s->samples) {
chan[16].pcm.sample=-1;
break;
}
}
} else {
chan[16].pcm.sample=-1;
}
}
}
int DivPlatformVERA::dispatch(DivCommand c) {
int tmp;
switch (c.cmd) {
case DIV_CMD_NOTE_ON:
if (c.chan<16) {
rWriteLo(c.chan,2,chan[c.chan].vol);
} else {
if (c.value!=DIV_NOTE_NULL) {
DivInstrument* ins=parent->getIns(chan[16].ins,DIV_INS_VERA);
chan[16].pcm.sample=ins->amiga.getSample(c.value);
c.value=ins->amiga.getFreq(c.value);
}
if (chan[16].pcm.sample<0 || chan[16].pcm.sample>=parent->song.sampleLen) {
chan[16].pcm.sample=-1;
}
chan[16].pcm.pos=0;
DivSample* s=parent->getSample(chan[16].pcm.sample);
unsigned char ctrl=0x90|chan[16].vol; // always stereo
if (s->depth==DIV_SAMPLE_DEPTH_16BIT) {
chan[16].pcm.depth16=true;
ctrl|=0x20;
} else {
chan[16].pcm.depth16=false;
if (s->depth!=DIV_SAMPLE_DEPTH_8BIT) chan[16].pcm.sample=-1;
}
rWritePCMCtrl(ctrl);
}
if (c.value!=DIV_NOTE_NULL) {
chan[c.chan].baseFreq=calcNoteFreq(c.chan,c.value);
chan[c.chan].freqChanged=true;
chan[c.chan].note=c.value;
}
chan[c.chan].active=true;
chan[c.chan].macroInit(parent->getIns(chan[c.chan].ins,DIV_INS_VERA));
if (!parent->song.brokenOutVol && !chan[c.chan].std.vol.will) {
chan[c.chan].outVol=chan[c.chan].vol;
}
break;
case DIV_CMD_NOTE_OFF:
chan[c.chan].active=false;
if(c.chan<16) {
rWriteLo(c.chan,2,0)
} else {
chan[16].pcm.sample=-1;
rWritePCMCtrl(0x80);
rWritePCMRate(0);
}
chan[c.chan].macroInit(NULL);
break;
case DIV_CMD_NOTE_OFF_ENV:
case DIV_CMD_ENV_RELEASE:
chan[c.chan].std.release();
break;
case DIV_CMD_INSTRUMENT:
chan[c.chan].ins=(unsigned char)c.value;
break;
case DIV_CMD_VOLUME:
if (c.chan<16) {
tmp=c.value&0x3f;
chan[c.chan].vol=tmp;
if (chan[c.chan].active) {
rWriteLo(c.chan,2,tmp);
}
} else {
tmp=c.value&0x0f;
chan[c.chan].vol=tmp;
if (chan[c.chan].active) {
rWritePCMVol(tmp);
}
}
break;
case DIV_CMD_GET_VOLUME:
return chan[c.chan].vol;
break;
case DIV_CMD_PITCH:
chan[c.chan].pitch=c.value;
chan[c.chan].freqChanged=true;
break;
case DIV_CMD_NOTE_PORTA: {
int destFreq=calcNoteFreq(c.chan,c.value2);
bool return2=false;
if (destFreq>chan[c.chan].baseFreq) {
chan[c.chan].baseFreq+=c.value;
if (chan[c.chan].baseFreq>=destFreq) {
chan[c.chan].baseFreq=destFreq;
return2=true;
}
} else {
chan[c.chan].baseFreq-=c.value;
if (chan[c.chan].baseFreq<=destFreq) {
chan[c.chan].baseFreq=destFreq;
return2=true;
}
}
chan[c.chan].freqChanged=true;
if (return2) {
chan[c.chan].inPorta=false;
return 2;
}
break;
}
case DIV_CMD_LEGATO:
chan[c.chan].baseFreq=calcNoteFreq(c.chan,c.value+((HACKY_LEGATO_MESS)?(chan[c.chan].std.arp.val):(0)));
chan[c.chan].freqChanged=true;
chan[c.chan].note=c.value;
break;
case DIV_CMD_PRE_PORTA:
if (chan[c.chan].active && c.value2) {
if (parent->song.resetMacroOnPorta) chan[c.chan].macroInit(parent->getIns(chan[c.chan].ins,DIV_INS_VERA));
}
if (!chan[c.chan].inPorta && c.value && chan[c.chan].std.arp.will && !NEW_ARP_STRAT) chan[c.chan].baseFreq=calcNoteFreq(c.chan,chan[c.chan].note);
chan[c.chan].inPorta=c.value;
break;
case DIV_CMD_STD_NOISE_MODE:
if (c.chan<16) rWriteLo(c.chan,3,c.value);
break;
case DIV_CMD_WAVE:
if (c.chan<16) rWriteHi(c.chan,3,c.value);
break;
case DIV_CMD_PANNING: {
tmp=0;
tmp|=(c.value>0)?1:0;
tmp|=(c.value2>0)?2:0;
chan[c.chan].pan=tmp&3;
if (c.chan<16) {
rWriteHi(c.chan,2,isMuted[c.chan]?0:chan[c.chan].pan);
}
break;
}
case DIV_CMD_GET_VOLMAX:
if(c.chan<16) {
return 63;
} else {
return 15;
}
break;
case DIV_CMD_MACRO_OFF:
chan[c.chan].std.mask(c.value,true);
break;
case DIV_CMD_MACRO_ON:
chan[c.chan].std.mask(c.value,false);
break;
case DIV_CMD_EXTERNAL:
rWriteZSMSync(c.value);
break;
case DIV_ALWAYS_SET_VOLUME:
return 0;
break;
default:
break;
}
return 1;
}
void* DivPlatformVERA::getChanState(int ch) {
return &chan[ch];
}
DivMacroInt* DivPlatformVERA::getChanMacroInt(int ch) {
return &chan[ch].std;
}
unsigned short DivPlatformVERA::getPan(int ch) {
return ((chan[ch].pan&1)<<8)|((chan[ch].pan&2)>>1);
}
DivDispatchOscBuffer* DivPlatformVERA::getOscBuffer(int ch) {
return oscBuf[ch];
}
unsigned char* DivPlatformVERA::getRegisterPool() {
return regPool;
}
int DivPlatformVERA::getRegisterPoolSize() {
return 67;
}
void DivPlatformVERA::muteChannel(int ch, bool mute) {
isMuted[ch]=mute;
if (ch<16) {
rWriteHi(ch,2,mute?0:chan[ch].pan);
}
}
float DivPlatformVERA::getPostAmp() {
return 4.0f;
}
int DivPlatformVERA::getOutputCount() {
return 2;
}
void DivPlatformVERA::notifyInsDeletion(void* ins) {
for (int i=0; i<17; i++) {
chan[i].std.notifyInsDeletion((DivInstrument*)ins);
}
}
void DivPlatformVERA::poke(unsigned int addr, unsigned short val) {
switch (addr) {
case 64:
rWritePCMCtrl((unsigned char)val);
break;
case 65:
rWritePCMRate((unsigned char)val);
break;
case 66:
rWritePCMData((unsigned char)val);
break;
default:
rWrite(0,addr,(unsigned char)val);
break;
}
}
void DivPlatformVERA::poke(std::vector<DivRegWrite>& wlist) {
for (auto &i: wlist) poke(i.addr,i.val);
}
void DivPlatformVERA::setFlags(const DivConfig& flags) {
chipClock=25000000;
CHECK_CUSTOM_CLOCK;
rate=chipClock/512;
for (int i=0; i<17; i++) {
oscBuf[i]->rate=rate;
}
}
int DivPlatformVERA::init(DivEngine* p, int channels, int sugRate, const DivConfig& flags) {
for (int i=0; i<17; i++) {
isMuted[i]=false;
oscBuf[i]=new DivDispatchOscBuffer;
}
parent=p;
psg=new struct VERA_PSG;
pcm=new struct VERA_PCM;
dumpWrites=false;
skipRegisterWrites=false;
setFlags(flags);
reset();
return 17;
}
void DivPlatformVERA::quit() {
for (int i=0; i<17; i++) {
delete oscBuf[i];
}
delete psg;
delete pcm;
}
DivPlatformVERA::~DivPlatformVERA() {
}