mirror of
https://github.com/tildearrow/furnace.git
synced 2024-11-19 11:05:11 +00:00
54e93db207
not reliable yet
191 lines
7.1 KiB
C
191 lines
7.1 KiB
C
/*
|
|
* Copyright (c) 2003, 2007-14 Matteo Frigo
|
|
* Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
|
*
|
|
*/
|
|
|
|
/* This file was automatically generated --- DO NOT EDIT */
|
|
/* Generated on Tue Sep 14 10:47:22 EDT 2021 */
|
|
|
|
#include "rdft/codelet-rdft.h"
|
|
|
|
#if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
|
|
|
|
/* Generated by: ../../../genfft/gen_hc2cdft_c.native -fma -simd -compact -variables 4 -pipeline-latency 8 -trivial-stores -variables 32 -no-generate-bytw -n 6 -dif -sign 1 -name hc2cbdftv_6 -include rdft/simd/hc2cbv.h */
|
|
|
|
/*
|
|
* This function contains 29 FP additions, 24 FP multiplications,
|
|
* (or, 17 additions, 12 multiplications, 12 fused multiply/add),
|
|
* 38 stack variables, 2 constants, and 12 memory accesses
|
|
*/
|
|
#include "rdft/simd/hc2cbv.h"
|
|
|
|
static void hc2cbdftv_6(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
|
|
{
|
|
DVK(KP500000000, +0.500000000000000000000000000000000000000000000);
|
|
DVK(KP866025403, +0.866025403784438646763723170752936183471402627);
|
|
{
|
|
INT m;
|
|
for (m = mb, W = W + ((mb - 1) * ((TWVL / VL) * 10)); m < me; m = m + VL, Rp = Rp + (VL * ms), Ip = Ip + (VL * ms), Rm = Rm - (VL * ms), Im = Im - (VL * ms), W = W + (TWVL * 10), MAKE_VOLATILE_STRIDE(24, rs)) {
|
|
V T4, Te, Tj, Tp, Tb, To, Th, Ti, Ta, Tg, T7, Tf, T2, T3, T8;
|
|
V T9, T5, T6, Tx, Tw, Tv, Ty, Tz, Tq, Ts, Tn, Tr, Tt, Tu, Tc;
|
|
V Tk, T1, Td, Tl, Tm;
|
|
T2 = LD(&(Rp[0]), ms, &(Rp[0]));
|
|
T3 = LD(&(Rm[WS(rs, 2)]), -ms, &(Rm[0]));
|
|
T4 = VFNMSCONJ(T3, T2);
|
|
Te = VFMACONJ(T3, T2);
|
|
T8 = LD(&(Rp[WS(rs, 1)]), ms, &(Rp[WS(rs, 1)]));
|
|
T9 = LD(&(Rm[WS(rs, 1)]), -ms, &(Rm[WS(rs, 1)]));
|
|
Ta = VFMSCONJ(T9, T8);
|
|
Tg = VFMACONJ(T9, T8);
|
|
T5 = LD(&(Rp[WS(rs, 2)]), ms, &(Rp[0]));
|
|
T6 = LD(&(Rm[0]), -ms, &(Rm[0]));
|
|
T7 = VFNMSCONJ(T6, T5);
|
|
Tf = VFMACONJ(T6, T5);
|
|
Tj = VMUL(LDK(KP866025403), VSUB(Tf, Tg));
|
|
Tp = VMUL(LDK(KP866025403), VSUB(T7, Ta));
|
|
Tb = VADD(T7, Ta);
|
|
To = VFNMS(LDK(KP500000000), Tb, T4);
|
|
Th = VADD(Tf, Tg);
|
|
Ti = VFNMS(LDK(KP500000000), Th, Te);
|
|
Tx = VADD(Te, Th);
|
|
Tv = LDW(&(W[0]));
|
|
Tw = VZMULI(Tv, VFMAI(Tp, To));
|
|
Ty = VADD(Tw, Tx);
|
|
ST(&(Rp[0]), Ty, ms, &(Rp[0]));
|
|
Tz = VCONJ(VSUB(Tx, Tw));
|
|
ST(&(Rm[0]), Tz, -ms, &(Rm[0]));
|
|
Tn = LDW(&(W[TWVL * 8]));
|
|
Tq = VZMULI(Tn, VFNMSI(Tp, To));
|
|
Tr = LDW(&(W[TWVL * 6]));
|
|
Ts = VZMUL(Tr, VFMAI(Tj, Ti));
|
|
Tt = VADD(Tq, Ts);
|
|
ST(&(Rp[WS(rs, 2)]), Tt, ms, &(Rp[0]));
|
|
Tu = VCONJ(VSUB(Ts, Tq));
|
|
ST(&(Rm[WS(rs, 2)]), Tu, -ms, &(Rm[0]));
|
|
T1 = LDW(&(W[TWVL * 4]));
|
|
Tc = VZMULI(T1, VADD(T4, Tb));
|
|
Td = LDW(&(W[TWVL * 2]));
|
|
Tk = VZMUL(Td, VFNMSI(Tj, Ti));
|
|
Tl = VADD(Tc, Tk);
|
|
ST(&(Rp[WS(rs, 1)]), Tl, ms, &(Rp[WS(rs, 1)]));
|
|
Tm = VCONJ(VSUB(Tk, Tc));
|
|
ST(&(Rm[WS(rs, 1)]), Tm, -ms, &(Rm[WS(rs, 1)]));
|
|
}
|
|
}
|
|
VLEAVE();
|
|
}
|
|
|
|
static const tw_instr twinstr[] = {
|
|
VTW(1, 1),
|
|
VTW(1, 2),
|
|
VTW(1, 3),
|
|
VTW(1, 4),
|
|
VTW(1, 5),
|
|
{ TW_NEXT, VL, 0 }
|
|
};
|
|
|
|
static const hc2c_desc desc = { 6, XSIMD_STRING("hc2cbdftv_6"), twinstr, &GENUS, { 17, 12, 12, 0 } };
|
|
|
|
void XSIMD(codelet_hc2cbdftv_6) (planner *p) {
|
|
X(khc2c_register) (p, hc2cbdftv_6, &desc, HC2C_VIA_DFT);
|
|
}
|
|
#else
|
|
|
|
/* Generated by: ../../../genfft/gen_hc2cdft_c.native -simd -compact -variables 4 -pipeline-latency 8 -trivial-stores -variables 32 -no-generate-bytw -n 6 -dif -sign 1 -name hc2cbdftv_6 -include rdft/simd/hc2cbv.h */
|
|
|
|
/*
|
|
* This function contains 29 FP additions, 14 FP multiplications,
|
|
* (or, 27 additions, 12 multiplications, 2 fused multiply/add),
|
|
* 41 stack variables, 2 constants, and 12 memory accesses
|
|
*/
|
|
#include "rdft/simd/hc2cbv.h"
|
|
|
|
static void hc2cbdftv_6(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
|
|
{
|
|
DVK(KP500000000, +0.500000000000000000000000000000000000000000000);
|
|
DVK(KP866025403, +0.866025403784438646763723170752936183471402627);
|
|
{
|
|
INT m;
|
|
for (m = mb, W = W + ((mb - 1) * ((TWVL / VL) * 10)); m < me; m = m + VL, Rp = Rp + (VL * ms), Ip = Ip + (VL * ms), Rm = Rm - (VL * ms), Im = Im - (VL * ms), W = W + (TWVL * 10), MAKE_VOLATILE_STRIDE(24, rs)) {
|
|
V T5, Th, Te, Ts, Tk, Tm, T2, T4, T3, T6, Tc, T8, Tb, T7, Ta;
|
|
V T9, Td, Ti, Tj, TA, Tf, Tn, Tv, Tt, Tz, T1, Tl, Tg, Tu, Tr;
|
|
V Tq, Ty, To, Tp, TC, TB, Tx, Tw;
|
|
T2 = LD(&(Rp[0]), ms, &(Rp[0]));
|
|
T3 = LD(&(Rm[WS(rs, 2)]), -ms, &(Rm[0]));
|
|
T4 = VCONJ(T3);
|
|
T5 = VSUB(T2, T4);
|
|
Th = VADD(T2, T4);
|
|
T6 = LD(&(Rp[WS(rs, 2)]), ms, &(Rp[0]));
|
|
Tc = LD(&(Rp[WS(rs, 1)]), ms, &(Rp[WS(rs, 1)]));
|
|
T7 = LD(&(Rm[0]), -ms, &(Rm[0]));
|
|
T8 = VCONJ(T7);
|
|
Ta = LD(&(Rm[WS(rs, 1)]), -ms, &(Rm[WS(rs, 1)]));
|
|
Tb = VCONJ(Ta);
|
|
T9 = VSUB(T6, T8);
|
|
Td = VSUB(Tb, Tc);
|
|
Te = VADD(T9, Td);
|
|
Ts = VBYI(VMUL(LDK(KP866025403), VSUB(T9, Td)));
|
|
Ti = VADD(T6, T8);
|
|
Tj = VADD(Tb, Tc);
|
|
Tk = VADD(Ti, Tj);
|
|
Tm = VBYI(VMUL(LDK(KP866025403), VSUB(Ti, Tj)));
|
|
TA = VADD(Th, Tk);
|
|
T1 = LDW(&(W[TWVL * 4]));
|
|
Tf = VZMULI(T1, VADD(T5, Te));
|
|
Tl = VFNMS(LDK(KP500000000), Tk, Th);
|
|
Tg = LDW(&(W[TWVL * 2]));
|
|
Tn = VZMUL(Tg, VSUB(Tl, Tm));
|
|
Tu = LDW(&(W[TWVL * 6]));
|
|
Tv = VZMUL(Tu, VADD(Tm, Tl));
|
|
Tr = VFNMS(LDK(KP500000000), Te, T5);
|
|
Tq = LDW(&(W[TWVL * 8]));
|
|
Tt = VZMULI(Tq, VSUB(Tr, Ts));
|
|
Ty = LDW(&(W[0]));
|
|
Tz = VZMULI(Ty, VADD(Ts, Tr));
|
|
To = VADD(Tf, Tn);
|
|
ST(&(Rp[WS(rs, 1)]), To, ms, &(Rp[WS(rs, 1)]));
|
|
Tp = VCONJ(VSUB(Tn, Tf));
|
|
ST(&(Rm[WS(rs, 1)]), Tp, -ms, &(Rm[WS(rs, 1)]));
|
|
TC = VCONJ(VSUB(TA, Tz));
|
|
ST(&(Rm[0]), TC, -ms, &(Rm[0]));
|
|
TB = VADD(Tz, TA);
|
|
ST(&(Rp[0]), TB, ms, &(Rp[0]));
|
|
Tx = VCONJ(VSUB(Tv, Tt));
|
|
ST(&(Rm[WS(rs, 2)]), Tx, -ms, &(Rm[0]));
|
|
Tw = VADD(Tt, Tv);
|
|
ST(&(Rp[WS(rs, 2)]), Tw, ms, &(Rp[0]));
|
|
}
|
|
}
|
|
VLEAVE();
|
|
}
|
|
|
|
static const tw_instr twinstr[] = {
|
|
VTW(1, 1),
|
|
VTW(1, 2),
|
|
VTW(1, 3),
|
|
VTW(1, 4),
|
|
VTW(1, 5),
|
|
{ TW_NEXT, VL, 0 }
|
|
};
|
|
|
|
static const hc2c_desc desc = { 6, XSIMD_STRING("hc2cbdftv_6"), twinstr, &GENUS, { 27, 12, 2, 0 } };
|
|
|
|
void XSIMD(codelet_hc2cbdftv_6) (planner *p) {
|
|
X(khc2c_register) (p, hc2cbdftv_6, &desc, HC2C_VIA_DFT);
|
|
}
|
|
#endif
|