furnace/src/engine/platform/su.cpp

619 lines
18 KiB
C++

/**
* Furnace Tracker - multi-system chiptune tracker
* Copyright (C) 2021-2022 tildearrow and contributors
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/
#include "su.h"
#include "../engine.h"
#include "../../ta-log.h"
#include <math.h>
//#define rWrite(a,v) pendingWrites[a]=v;
#define rWrite(a,v) if (!skipRegisterWrites) {writes.emplace(a,v); if (dumpWrites) {addWrite(a,v);} }
#define chWrite(c,a,v) rWrite(((c)<<5)|(a),v);
#define CHIP_FREQBASE 524288
const char** DivPlatformSoundUnit::getRegisterSheet() {
return NULL;
}
const char* DivPlatformSoundUnit::getEffectName(unsigned char effect) {
switch (effect) {
case 0x10:
return "10xx: Set waveform (0 to 7)";
break;
case 0x12:
return "12xx: Set pulse width (0 to 7F)";
break;
case 0x13:
return "13xx: Set resonance (0 to F)";
break;
case 0x14:
return "14xx: Set filter mode (bit 0: ring mod; bit 1: low pass; bit 2: high pass; bit 3: band pass)";
break;
case 0x15:
return "15xx: Set frequency sweep period low byte";
break;
case 0x16:
return "16xx: Set frequency sweep period high byte";
break;
case 0x17:
return "17xx: Set volume sweep period low byte";
break;
case 0x18:
return "18xx: Set volume sweep period high byte";
break;
case 0x19:
return "19xx: Set cutoff sweep period low byte";
break;
case 0x1a:
return "1Axx: Set cutoff sweep period high byte";
break;
case 0x1b:
return "1Bxx: Set frequency sweep boundary";
break;
case 0x1c:
return "1Cxx: Set volume sweep boundary";
break;
case 0x1d:
return "1Dxx: Set cutoff sweep boundary";
break;
case 0x1e:
return "17xx: Set phase reset period low byte";
break;
case 0x1f:
return "18xx: Set phase reset period high byte";
break;
case 0x20:
return "20xx: Toggle frequency sweep (bit 0-6: speed; bit 7: direction is up)";
break;
case 0x21:
return "21xx: Toggle volume sweep (bit 0-4: speed; bit 5: direciton is up; bit 6: loop; bit 7: alternate)";
break;
case 0x22:
return "22xx: Toggle cutoff sweep (bit 0-6: speed; bit 7: direction is up)";
break;
case 0x40: case 0x41: case 0x42: case 0x43:
case 0x44: case 0x45: case 0x46: case 0x47:
case 0x48: case 0x49: case 0x4a: case 0x4b:
case 0x4c: case 0x4d: case 0x4e: case 0x4f:
return "4xxx: Set cutoff (0 to FFF)";
break;
}
return NULL;
}
void DivPlatformSoundUnit::acquire(short* bufL, short* bufR, size_t start, size_t len) {
for (size_t h=start; h<start+len; h++) {
while (!writes.empty()) {
QueuedWrite w=writes.front();
su->Write(w.addr,w.val);
writes.pop();
}
su->NextSample(&bufL[h],&bufR[h]);
for (int i=0; i<8; i++) {
oscBuf[i]->data[oscBuf[i]->needle++]=su->GetSample(i);
}
}
}
void DivPlatformSoundUnit::writeControl(int ch) {
chWrite(ch,0x04,(chan[ch].wave&7)|(chan[ch].pcm<<3)|(chan[ch].control<<4));
}
void DivPlatformSoundUnit::writeControlUpper(int ch) {
chWrite(ch,0x05,((int)chan[ch].phaseReset)|(chan[ch].filterPhaseReset<<1)|(chan[ch].pcmLoop<<2)|(chan[ch].timerSync<<3)|(chan[ch].freqSweep<<4)|(chan[ch].volSweep<<5)|(chan[ch].cutSweep<<6));
chan[ch].phaseReset=false;
chan[ch].filterPhaseReset=false;
}
void DivPlatformSoundUnit::tick(bool sysTick) {
for (int i=0; i<8; i++) {
chan[i].std.next();
if (chan[i].std.vol.had) {
DivInstrument* ins=parent->getIns(chan[i].ins,DIV_INS_SU);
if (ins->type==DIV_INS_AMIGA) {
chan[i].outVol=((chan[i].vol&127)*MIN(64,chan[i].std.vol.val))>>6;
} else {
chan[i].outVol=((chan[i].vol&127)*MIN(127,chan[i].std.vol.val))>>7;
}
chWrite(i,0x02,chan[i].outVol);
}
if (chan[i].std.arp.had) {
if (!chan[i].inPorta) {
if (chan[i].std.arp.mode) {
chan[i].baseFreq=NOTE_FREQUENCY(chan[i].std.arp.val);
} else {
chan[i].baseFreq=NOTE_FREQUENCY(chan[i].note+chan[i].std.arp.val);
}
}
chan[i].freqChanged=true;
} else {
if (chan[i].std.arp.mode && chan[i].std.arp.finished) {
chan[i].baseFreq=NOTE_FREQUENCY(chan[i].note);
chan[i].freqChanged=true;
}
}
if (chan[i].std.duty.had) {
chan[i].duty=chan[i].std.duty.val;
chWrite(i,0x08,chan[i].duty);
}
if (chan[i].std.wave.had) {
chan[i].wave=chan[i].std.wave.val&7;
writeControl(i);
}
if (chan[i].std.phaseReset.had) {
chan[i].phaseReset=chan[i].std.phaseReset.val;
writeControlUpper(i);
}
if (chan[i].std.panL.had) {
chan[i].pan=chan[i].std.panL.val;
chWrite(i,0x03,chan[i].pan);
}
if (chan[i].std.pitch.had) {
if (chan[i].std.pitch.mode) {
chan[i].pitch2+=chan[i].std.pitch.val;
CLAMP_VAR(chan[i].pitch2,-32768,32767);
} else {
chan[i].pitch2=chan[i].std.pitch.val;
}
chan[i].freqChanged=true;
}
if (chan[i].std.ex1.had) {
chan[i].cutoff=((chan[i].std.ex1.val&16383)*chan[i].baseCutoff)/16380;
chWrite(i,0x06,chan[i].cutoff&0xff);
chWrite(i,0x07,chan[i].cutoff>>8);
}
if (chan[i].std.ex2.had) {
chan[i].res=chan[i].std.ex2.val;
chWrite(i,0x09,chan[i].res);
}
if (chan[i].std.ex3.had) {
chan[i].control=chan[i].std.ex3.val&15;
writeControl(i);
}
if (chan[i].freqChanged || chan[i].keyOn || chan[i].keyOff) {
//DivInstrument* ins=parent->getIns(chan[i].ins,DIV_INS_SU);
chan[i].freq=parent->calcFreq(chan[i].baseFreq,chan[i].pitch,false,2,chan[i].pitch2,chipClock,CHIP_FREQBASE);
if (chan[i].pcm) {
DivInstrument* ins=parent->getIns(chan[i].ins,DIV_INS_SU);
// TODO: sample map?
DivSample* sample=parent->getSample(ins->amiga.getSample(chan[i].note));
if (sample!=NULL) {
double off=0.25;
if (sample->centerRate<1) {
off=0.25;
} else {
off=(double)sample->centerRate/(8363.0*4.0);
}
chan[i].freq=(double)chan[i].freq*off;
}
}
if (chan[i].freq<0) chan[i].freq=0;
if (chan[i].freq>65535) chan[i].freq=65535;
chWrite(i,0x00,chan[i].freq&0xff);
chWrite(i,0x01,chan[i].freq>>8);
if (chan[i].keyOn) {
if (chan[i].pcm) {
DivInstrument* ins=parent->getIns(chan[i].ins,DIV_INS_SU);
DivSample* sample=parent->getSample(ins->amiga.getSample(chan[i].note));
if (sample!=NULL) {
unsigned int sampleEnd=sample->offSU+sample->samples;
unsigned int off=sample->offSU+chan[i].hasOffset;
chan[i].hasOffset=0;
if (sampleEnd>=getSampleMemCapacity(0)) sampleEnd=getSampleMemCapacity(0)-1;
chWrite(i,0x0a,off&0xff);
chWrite(i,0x0b,off>>8);
chWrite(i,0x0c,sampleEnd&0xff);
chWrite(i,0x0d,sampleEnd>>8);
if (sample->loopStart>=0 && sample->loopStart<(int)sample->samples) {
unsigned int sampleLoop=sample->offSU+sample->loopStart;
if (sampleLoop>=getSampleMemCapacity(0)) sampleLoop=getSampleMemCapacity(0)-1;
chWrite(i,0x0e,sampleLoop&0xff);
chWrite(i,0x0f,sampleLoop>>8);
chan[i].pcmLoop=true;
} else {
chan[i].pcmLoop=false;
}
writeControl(i);
writeControlUpper(i);
}
}
}
if (chan[i].keyOff) {
chWrite(i,0x02,0);
}
if (chan[i].keyOn) chan[i].keyOn=false;
if (chan[i].keyOff) chan[i].keyOff=false;
chan[i].freqChanged=false;
}
}
}
int DivPlatformSoundUnit::dispatch(DivCommand c) {
switch (c.cmd) {
case DIV_CMD_NOTE_ON: {
DivInstrument* ins=parent->getIns(chan[c.chan].ins,DIV_INS_SU);
if (chan[c.chan].pcm && ins->type!=DIV_INS_AMIGA) {
chan[c.chan].pcm=(ins->type==DIV_INS_AMIGA);
writeControl(c.chan);
writeControlUpper(c.chan);
}
chan[c.chan].pcm=(ins->type==DIV_INS_AMIGA);
if (c.value!=DIV_NOTE_NULL) {
chan[c.chan].baseFreq=NOTE_FREQUENCY(c.value);
chan[c.chan].freqChanged=true;
chan[c.chan].note=c.value;
}
chan[c.chan].active=true;
chan[c.chan].keyOn=true;
chWrite(c.chan,0x02,chan[c.chan].vol);
chan[c.chan].macroInit(ins);
if (!parent->song.brokenOutVol && !chan[c.chan].std.vol.will) {
chan[c.chan].outVol=chan[c.chan].vol;
}
chan[c.chan].insChanged=false;
break;
}
case DIV_CMD_NOTE_OFF:
chan[c.chan].active=false;
chan[c.chan].keyOff=true;
chan[c.chan].macroInit(NULL);
break;
case DIV_CMD_NOTE_OFF_ENV:
case DIV_CMD_ENV_RELEASE:
chan[c.chan].std.release();
break;
case DIV_CMD_INSTRUMENT:
if (chan[c.chan].ins!=c.value || c.value2==1) {
chan[c.chan].ins=c.value;
chan[c.chan].insChanged=true;
}
break;
case DIV_CMD_VOLUME:
if (chan[c.chan].vol!=c.value) {
chan[c.chan].vol=c.value;
if (!chan[c.chan].std.vol.has) {
chan[c.chan].outVol=c.value;
if (chan[c.chan].active) chWrite(c.chan,0x02,chan[c.chan].outVol);
}
}
break;
case DIV_CMD_GET_VOLUME:
if (chan[c.chan].std.vol.has) {
return chan[c.chan].vol;
}
return chan[c.chan].outVol;
break;
case DIV_CMD_PITCH:
chan[c.chan].pitch=c.value;
chan[c.chan].freqChanged=true;
break;
case DIV_CMD_WAVE:
chan[c.chan].wave=c.value&7;
writeControl(c.chan);
break;
case DIV_CMD_STD_NOISE_MODE:
chan[c.chan].duty=c.value&127;
chWrite(c.chan,0x08,chan[c.chan].duty);
break;
case DIV_CMD_C64_RESONANCE:
chan[c.chan].res=c.value;
chWrite(c.chan,0x09,chan[c.chan].res);
break;
case DIV_CMD_C64_FILTER_MODE:
chan[c.chan].control=c.value&15;
break;
case DIV_CMD_SU_SWEEP_PERIOD_LOW: {
switch (c.value) {
case 0:
chan[c.chan].freqSweepP=(chan[c.chan].freqSweepP&0xff00)|c.value2;
chWrite(c.chan,0x10,chan[c.chan].freqSweepP&0xff);
break;
case 1:
chan[c.chan].volSweepP=(chan[c.chan].volSweepP&0xff00)|c.value2;
chWrite(c.chan,0x14,chan[c.chan].volSweepP&0xff);
break;
case 2:
chan[c.chan].cutSweepP=(chan[c.chan].cutSweepP&0xff00)|c.value2;
chWrite(c.chan,0x18,chan[c.chan].cutSweepP&0xff);
break;
}
break;
}
case DIV_CMD_SU_SWEEP_PERIOD_HIGH: {
switch (c.value) {
case 0:
chan[c.chan].freqSweepP=(chan[c.chan].freqSweepP&0xff)|(c.value2<<8);
chWrite(c.chan,0x11,chan[c.chan].freqSweepP>>8);
break;
case 1:
chan[c.chan].volSweepP=(chan[c.chan].volSweepP&0xff)|(c.value2<<8);
chWrite(c.chan,0x15,chan[c.chan].volSweepP>>8);
break;
case 2:
chan[c.chan].cutSweepP=(chan[c.chan].cutSweepP&0xff)|(c.value2<<8);
chWrite(c.chan,0x19,chan[c.chan].cutSweepP>>8);
break;
}
break;
}
case DIV_CMD_SU_SWEEP_BOUND: {
switch (c.value) {
case 0:
chan[c.chan].freqSweepB=c.value2;
chWrite(c.chan,0x13,chan[c.chan].freqSweepB);
break;
case 1:
chan[c.chan].volSweepB=c.value2;
chWrite(c.chan,0x17,chan[c.chan].volSweepB);
break;
case 2:
chan[c.chan].cutSweepB=c.value2;
chWrite(c.chan,0x1b,chan[c.chan].cutSweepB);
break;
}
break;
}
case DIV_CMD_SU_SWEEP_ENABLE: {
switch (c.value) {
case 0:
chan[c.chan].freqSweepV=c.value2;
chan[c.chan].freqSweep=(c.value2>0);
chWrite(c.chan,0x12,chan[c.chan].freqSweepV);
break;
case 1:
chan[c.chan].volSweepV=c.value2;
chan[c.chan].volSweep=(c.value2>0);
chWrite(c.chan,0x16,chan[c.chan].volSweepV);
break;
case 2:
chan[c.chan].cutSweepV=c.value2;
chan[c.chan].cutSweep=(c.value2>0);
chWrite(c.chan,0x1a,chan[c.chan].cutSweepV);
break;
}
writeControlUpper(c.chan);
break;
}
case DIV_CMD_SU_SYNC_PERIOD_LOW:
chan[c.chan].syncTimer=(chan[c.chan].syncTimer&0xff00)|c.value;
chan[c.chan].timerSync=(chan[c.chan].syncTimer>0);
chWrite(c.chan,0x1e,chan[c.chan].syncTimer&0xff);
chWrite(c.chan,0x1f,chan[c.chan].syncTimer>>8);
writeControlUpper(c.chan);
break;
case DIV_CMD_SU_SYNC_PERIOD_HIGH:
chan[c.chan].syncTimer=(chan[c.chan].syncTimer&0xff)|(c.value<<8);
chan[c.chan].timerSync=(chan[c.chan].syncTimer>0);
chWrite(c.chan,0x1e,chan[c.chan].syncTimer&0xff);
chWrite(c.chan,0x1f,chan[c.chan].syncTimer>>8);
writeControlUpper(c.chan);
break;
case DIV_CMD_C64_FINE_CUTOFF:
chan[c.chan].baseCutoff=c.value;
if (!chan[c.chan].std.ex1.has) {
chan[c.chan].cutoff=chan[c.chan].baseCutoff;
chWrite(c.chan,0x06,chan[c.chan].cutoff&0xff);
chWrite(c.chan,0x07,chan[c.chan].cutoff>>8);
}
break;
case DIV_CMD_NOTE_PORTA: {
int destFreq=NOTE_FREQUENCY(c.value2);
bool return2=false;
if (destFreq>chan[c.chan].baseFreq) {
chan[c.chan].baseFreq+=c.value*((parent->song.linearPitch==2)?1:(1+(chan[c.chan].baseFreq>>9)));
if (chan[c.chan].baseFreq>=destFreq) {
chan[c.chan].baseFreq=destFreq;
return2=true;
}
} else {
chan[c.chan].baseFreq-=c.value*((parent->song.linearPitch==2)?1:(1+(chan[c.chan].baseFreq>>9)));
if (chan[c.chan].baseFreq<=destFreq) {
chan[c.chan].baseFreq=destFreq;
return2=true;
}
}
chan[c.chan].freqChanged=true;
if (return2) {
chan[c.chan].inPorta=false;
return 2;
}
break;
}
case DIV_CMD_PANNING: {
chan[c.chan].pan=parent->convertPanSplitToLinearLR(c.value,c.value2,254)-127;
chWrite(c.chan,0x03,chan[c.chan].pan);
break;
}
case DIV_CMD_SAMPLE_POS:
chan[c.chan].hasOffset=c.value;
chan[c.chan].keyOn=true;
break;
case DIV_CMD_LEGATO:
chan[c.chan].baseFreq=NOTE_FREQUENCY(c.value+((chan[c.chan].std.arp.will && !chan[c.chan].std.arp.mode)?(chan[c.chan].std.arp.val):(0)));
chan[c.chan].freqChanged=true;
chan[c.chan].note=c.value;
break;
case DIV_CMD_PRE_PORTA:
if (chan[c.chan].active && c.value2) {
if (parent->song.resetMacroOnPorta) chan[c.chan].macroInit(parent->getIns(chan[c.chan].ins,DIV_INS_SU));
}
chan[c.chan].inPorta=c.value;
break;
case DIV_CMD_GET_VOLMAX:
return 127;
break;
case DIV_ALWAYS_SET_VOLUME:
return 1;
break;
default:
break;
}
return 1;
}
void DivPlatformSoundUnit::muteChannel(int ch, bool mute) {
isMuted[ch]=mute;
su->muted[ch]=mute;
}
void DivPlatformSoundUnit::forceIns() {
for (int i=0; i<8; i++) {
chan[i].insChanged=true;
chan[i].freqChanged=true;
}
}
void* DivPlatformSoundUnit::getChanState(int ch) {
return &chan[ch];
}
DivMacroInt* DivPlatformSoundUnit::getChanMacroInt(int ch) {
return &chan[ch].std;
}
DivDispatchOscBuffer* DivPlatformSoundUnit::getOscBuffer(int ch) {
return oscBuf[ch];
}
unsigned char* DivPlatformSoundUnit::getRegisterPool() {
return (unsigned char*)su->chan;
}
int DivPlatformSoundUnit::getRegisterPoolSize() {
return 256;
}
void DivPlatformSoundUnit::reset() {
while (!writes.empty()) writes.pop();
memset(regPool,0,128);
for (int i=0; i<8; i++) {
chan[i]=DivPlatformSoundUnit::Channel();
chan[i].std.setEngine(parent);
}
if (dumpWrites) {
addWrite(0xffffffff,0);
}
su->Reset();
for (int i=0; i<8; i++) {
chWrite(i,0x08,0x3f);
}
lastPan=0xff;
cycles=0;
curChan=-1;
sampleBank=0;
lfoMode=0;
lfoSpeed=255;
delay=500;
}
bool DivPlatformSoundUnit::isStereo() {
return true;
}
bool DivPlatformSoundUnit::keyOffAffectsArp(int ch) {
return true;
}
void DivPlatformSoundUnit::notifyInsDeletion(void* ins) {
for (int i=0; i<8; i++) {
chan[i].std.notifyInsDeletion((DivInstrument*)ins);
}
}
void DivPlatformSoundUnit::setFlags(unsigned int flags) {
if (flags&1) {
chipClock=1190000;
} else {
chipClock=1236000;
}
rate=chipClock/4;
for (int i=0; i<8; i++) {
oscBuf[i]->rate=rate;
}
}
void DivPlatformSoundUnit::poke(unsigned int addr, unsigned short val) {
rWrite(addr,val);
}
void DivPlatformSoundUnit::poke(std::vector<DivRegWrite>& wlist) {
for (DivRegWrite& i: wlist) rWrite(i.addr,i.val);
}
const void* DivPlatformSoundUnit::getSampleMem(int index) {
return (index==0)?su->pcm:NULL;
}
size_t DivPlatformSoundUnit::getSampleMemCapacity(int index) {
return (index==0)?8192:0;
}
size_t DivPlatformSoundUnit::getSampleMemUsage(int index) {
return (index==0)?sampleMemLen:0;
}
void DivPlatformSoundUnit::renderSamples() {
memset(su->pcm,0,getSampleMemCapacity(0));
size_t memPos=0;
for (int i=0; i<parent->song.sampleLen; i++) {
DivSample* s=parent->song.sample[i];
int paddedLen=s->samples;
if (memPos>=getSampleMemCapacity(0)) {
logW("out of PCM memory for sample %d!",i);
break;
}
if (memPos+paddedLen>=getSampleMemCapacity(0)) {
memcpy(su->pcm+memPos,s->data8,getSampleMemCapacity(0)-memPos);
logW("out of PCM memory for sample %d!",i);
} else {
memcpy(su->pcm+memPos,s->data8,paddedLen);
}
s->offSU=memPos;
memPos+=paddedLen;
}
sampleMemLen=memPos;
}
int DivPlatformSoundUnit::init(DivEngine* p, int channels, int sugRate, unsigned int flags) {
parent=p;
dumpWrites=false;
skipRegisterWrites=false;
for (int i=0; i<8; i++) {
isMuted[i]=false;
oscBuf[i]=new DivDispatchOscBuffer;
}
setFlags(flags);
su=new SoundUnit();
su->Init();
reset();
return 6;
}
void DivPlatformSoundUnit::quit() {
for (int i=0; i<8; i++) {
delete oscBuf[i];
}
delete su;
}
DivPlatformSoundUnit::~DivPlatformSoundUnit() {
}