furnace/extern/fftw/mpi/dft-rank-geq2.c
2022-05-31 03:24:29 -05:00

188 lines
5.6 KiB
C

/*
* Copyright (c) 2003, 2007-14 Matteo Frigo
* Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
*/
/* Complex DFTs of rank >= 2, for the case where we are distributed
across the first dimension only, and the output is not transposed. */
#include "mpi-dft.h"
#include "dft/dft.h"
typedef struct {
solver super;
int preserve_input; /* preserve input even if DESTROY_INPUT was passed */
} S;
typedef struct {
plan_mpi_dft super;
plan *cld1, *cld2;
INT roff, ioff;
int preserve_input;
} P;
static void apply(const plan *ego_, R *I, R *O)
{
const P *ego = (const P *) ego_;
plan_dft *cld1;
plan_rdft *cld2;
INT roff = ego->roff, ioff = ego->ioff;
/* DFT local dimensions */
cld1 = (plan_dft *) ego->cld1;
if (ego->preserve_input) {
cld1->apply(ego->cld1, I+roff, I+ioff, O+roff, O+ioff);
I = O;
}
else
cld1->apply(ego->cld1, I+roff, I+ioff, I+roff, I+ioff);
/* DFT non-local dimension (via dft-rank1-bigvec, usually): */
cld2 = (plan_rdft *) ego->cld2;
cld2->apply(ego->cld2, I, O);
}
static int applicable(const S *ego, const problem *p_,
const planner *plnr)
{
const problem_mpi_dft *p = (const problem_mpi_dft *) p_;
return (1
&& p->sz->rnk > 1
&& p->flags == 0 /* TRANSPOSED/SCRAMBLED_IN/OUT not supported */
&& (!ego->preserve_input || (!NO_DESTROY_INPUTP(plnr)
&& p->I != p->O))
&& XM(is_local_after)(1, p->sz, IB)
&& XM(is_local_after)(1, p->sz, OB)
&& (!NO_SLOWP(plnr) /* slow if dft-serial is applicable */
|| !XM(dft_serial_applicable)(p))
);
}
static void awake(plan *ego_, enum wakefulness wakefulness)
{
P *ego = (P *) ego_;
X(plan_awake)(ego->cld1, wakefulness);
X(plan_awake)(ego->cld2, wakefulness);
}
static void destroy(plan *ego_)
{
P *ego = (P *) ego_;
X(plan_destroy_internal)(ego->cld2);
X(plan_destroy_internal)(ego->cld1);
}
static void print(const plan *ego_, printer *p)
{
const P *ego = (const P *) ego_;
p->print(p, "(mpi-dft-rank-geq2%s%(%p%)%(%p%))",
ego->preserve_input==2 ?"/p":"", ego->cld1, ego->cld2);
}
static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr)
{
const S *ego = (const S *) ego_;
const problem_mpi_dft *p;
P *pln;
plan *cld1 = 0, *cld2 = 0;
R *ri, *ii, *ro, *io, *I, *O;
tensor *sz;
dtensor *sz2;
int i, my_pe, n_pes;
INT nrest;
static const plan_adt padt = {
XM(dft_solve), awake, print, destroy
};
UNUSED(ego);
if (!applicable(ego, p_, plnr))
return (plan *) 0;
p = (const problem_mpi_dft *) p_;
X(extract_reim)(p->sign, I = p->I, &ri, &ii);
X(extract_reim)(p->sign, O = p->O, &ro, &io);
if (ego->preserve_input || NO_DESTROY_INPUTP(plnr))
I = O;
else {
ro = ri;
io = ii;
}
MPI_Comm_rank(p->comm, &my_pe);
MPI_Comm_size(p->comm, &n_pes);
sz = X(mktensor)(p->sz->rnk - 1); /* tensor of last rnk-1 dimensions */
i = p->sz->rnk - 2; A(i >= 0);
sz->dims[i].n = p->sz->dims[i+1].n;
sz->dims[i].is = sz->dims[i].os = 2 * p->vn;
for (--i; i >= 0; --i) {
sz->dims[i].n = p->sz->dims[i+1].n;
sz->dims[i].is = sz->dims[i].os = sz->dims[i+1].n * sz->dims[i+1].is;
}
nrest = X(tensor_sz)(sz);
{
INT is = sz->dims[0].n * sz->dims[0].is;
INT b = XM(block)(p->sz->dims[0].n, p->sz->dims[0].b[IB], my_pe);
cld1 = X(mkplan_d)(plnr,
X(mkproblem_dft_d)(sz,
X(mktensor_2d)(b, is, is,
p->vn, 2, 2),
ri, ii, ro, io));
if (XM(any_true)(!cld1, p->comm)) goto nada;
}
sz2 = XM(mkdtensor)(1); /* tensor for first (distributed) dimension */
sz2->dims[0] = p->sz->dims[0];
cld2 = X(mkplan_d)(plnr, XM(mkproblem_dft_d)(sz2, nrest * p->vn,
I, O, p->comm, p->sign,
RANK1_BIGVEC_ONLY));
if (XM(any_true)(!cld2, p->comm)) goto nada;
pln = MKPLAN_MPI_DFT(P, &padt, apply);
pln->cld1 = cld1;
pln->cld2 = cld2;
pln->preserve_input = ego->preserve_input ? 2 : NO_DESTROY_INPUTP(plnr);
pln->roff = ri - p->I;
pln->ioff = ii - p->I;
X(ops_add)(&cld1->ops, &cld2->ops, &pln->super.super.ops);
return &(pln->super.super);
nada:
X(plan_destroy_internal)(cld2);
X(plan_destroy_internal)(cld1);
return (plan *) 0;
}
static solver *mksolver(int preserve_input)
{
static const solver_adt sadt = { PROBLEM_MPI_DFT, mkplan, 0 };
S *slv = MKSOLVER(S, &sadt);
slv->preserve_input = preserve_input;
return &(slv->super);
}
void XM(dft_rank_geq2_register)(planner *p)
{
int preserve_input;
for (preserve_input = 0; preserve_input <= 1; ++preserve_input)
REGISTER_SOLVER(p, mksolver(preserve_input));
}