mirror of
https://github.com/tildearrow/furnace.git
synced 2024-11-01 18:42:40 +00:00
54e93db207
not reliable yet
236 lines
7.1 KiB
OCaml
236 lines
7.1 KiB
OCaml
(*
|
|
* Copyright (c) 1997-1999 Massachusetts Institute of Technology
|
|
* Copyright (c) 2003, 2007-14 Matteo Frigo
|
|
* Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
|
*
|
|
*)
|
|
|
|
(* This file contains the instruction scheduler, which finds an
|
|
efficient ordering for a given list of instructions.
|
|
|
|
The scheduler analyzes the DAG (directed acyclic graph) formed by
|
|
the instruction dependencies, and recursively partitions it. The
|
|
resulting schedule data structure expresses a "good" ordering
|
|
and structure for the computation.
|
|
|
|
The scheduler makes use of utilties in Dag and other packages to
|
|
manipulate the Dag and the instruction list. *)
|
|
|
|
open Dag
|
|
(*************************************************
|
|
* Dag scheduler
|
|
*************************************************)
|
|
let to_assignment node = (Expr.Assign (node.assigned, node.expression))
|
|
let makedag l = Dag.makedag
|
|
(List.map (function Expr.Assign (v, x) -> (v, x)) l)
|
|
|
|
let return x = x
|
|
let has_color c n = (n.color = c)
|
|
let set_color c n = (n.color <- c)
|
|
let has_either_color c1 c2 n = (n.color = c1 || n.color = c2)
|
|
|
|
let infinity = 100000
|
|
|
|
let cc dag inputs =
|
|
begin
|
|
Dag.for_all dag (fun node ->
|
|
node.label <- infinity);
|
|
|
|
(match inputs with
|
|
a :: _ -> bfs dag a 0
|
|
| _ -> failwith "connected");
|
|
|
|
return
|
|
((List.map to_assignment (List.filter (fun n -> n.label < infinity)
|
|
(Dag.to_list dag))),
|
|
(List.map to_assignment (List.filter (fun n -> n.label == infinity)
|
|
(Dag.to_list dag))))
|
|
end
|
|
|
|
let rec connected_components alist =
|
|
let dag = makedag alist in
|
|
let inputs =
|
|
List.filter (fun node -> Util.null node.predecessors)
|
|
(Dag.to_list dag) in
|
|
match cc dag inputs with
|
|
(a, []) -> [a]
|
|
| (a, b) -> a :: connected_components b
|
|
|
|
let single_load node =
|
|
match (node.input_variables, node.predecessors) with
|
|
([x], []) ->
|
|
Variable.is_constant x ||
|
|
(!Magic.locations_are_special && Variable.is_locative x)
|
|
| _ -> false
|
|
|
|
let loads_locative node =
|
|
match (node.input_variables, node.predecessors) with
|
|
| ([x], []) -> Variable.is_locative x
|
|
| _ -> false
|
|
|
|
let partition alist =
|
|
let dag = makedag alist in
|
|
let dag' = Dag.to_list dag in
|
|
let inputs =
|
|
List.filter (fun node -> Util.null node.predecessors) dag'
|
|
and outputs =
|
|
List.filter (fun node -> Util.null node.successors) dag'
|
|
and special_inputs = List.filter single_load dag' in
|
|
begin
|
|
|
|
let c = match !Magic.schedule_type with
|
|
| 1 -> RED; (* all nodes in the input partition *)
|
|
| -1 -> BLUE; (* all nodes in the output partition *)
|
|
| _ -> BLACK; (* node color determined by bisection algorithm *)
|
|
in Dag.for_all dag (fun node -> node.color <- c);
|
|
|
|
Util.for_list inputs (set_color RED);
|
|
|
|
(*
|
|
The special inputs are those input nodes that load a single
|
|
location or twiddle factor. Special inputs can end up either
|
|
in the blue or in the red part. These inputs are special
|
|
because they inherit a color from their neighbors: If a red
|
|
node needs a special input, the special input becomes red, but
|
|
if all successors of a special input are blue, the special
|
|
input becomes blue. Outputs are always blue, whether they be
|
|
special or not.
|
|
|
|
Because of the processing of special inputs, however, the final
|
|
partition might end up being composed only of blue nodes (which
|
|
is incorrect). In this case we manually reset all inputs
|
|
(whether special or not) to be red.
|
|
*)
|
|
|
|
Util.for_list special_inputs (set_color YELLOW);
|
|
|
|
Util.for_list outputs (set_color BLUE);
|
|
|
|
let rec loopi donep =
|
|
match (List.filter
|
|
(fun node -> (has_color BLACK node) &&
|
|
List.for_all (has_either_color RED YELLOW) node.predecessors)
|
|
dag') with
|
|
[] -> if (donep) then () else loopo true
|
|
| i ->
|
|
begin
|
|
Util.for_list i (fun node ->
|
|
begin
|
|
set_color RED node;
|
|
Util.for_list node.predecessors (set_color RED);
|
|
end);
|
|
loopo false;
|
|
end
|
|
|
|
and loopo donep =
|
|
match (List.filter
|
|
(fun node -> (has_either_color BLACK YELLOW node) &&
|
|
List.for_all (has_color BLUE) node.successors)
|
|
dag') with
|
|
[] -> if (donep) then () else loopi true
|
|
| o ->
|
|
begin
|
|
Util.for_list o (set_color BLUE);
|
|
loopi false;
|
|
end
|
|
|
|
in loopi false;
|
|
|
|
(* fix the partition if it is incorrect *)
|
|
if not (List.exists (has_color RED) dag') then
|
|
Util.for_list inputs (set_color RED);
|
|
|
|
return
|
|
((List.map to_assignment (List.filter (has_color RED) dag')),
|
|
(List.map to_assignment (List.filter (has_color BLUE) dag')))
|
|
end
|
|
|
|
type schedule =
|
|
Done
|
|
| Instr of Expr.assignment
|
|
| Seq of (schedule * schedule)
|
|
| Par of schedule list
|
|
|
|
|
|
|
|
(* produce a sequential schedule determined by the user *)
|
|
let rec sequentially = function
|
|
[] -> Done
|
|
| a :: b -> Seq (Instr a, sequentially b)
|
|
|
|
let schedule =
|
|
let rec schedule_alist = function
|
|
| [] -> Done
|
|
| [a] -> Instr a
|
|
| alist -> match connected_components alist with
|
|
| ([a]) -> schedule_connected a
|
|
| l -> Par (List.map schedule_alist l)
|
|
|
|
and schedule_connected alist =
|
|
match partition alist with
|
|
| (a, b) -> Seq (schedule_alist a, schedule_alist b)
|
|
|
|
in fun x ->
|
|
let () = Util.info "begin schedule" in
|
|
let res = schedule_alist x in
|
|
let () = Util.info "end schedule" in
|
|
res
|
|
|
|
|
|
(* partition a dag into two parts:
|
|
|
|
1) the set of loads from locatives and their successors,
|
|
2) all other nodes
|
|
|
|
This step separates the ``body'' of the dag, which computes the
|
|
actual fft, from the ``precomputations'' part, which computes e.g.
|
|
twiddle factors.
|
|
*)
|
|
let partition_precomputations alist =
|
|
let dag = makedag alist in
|
|
let dag' = Dag.to_list dag in
|
|
let loads = List.filter loads_locative dag' in
|
|
begin
|
|
|
|
Dag.for_all dag (set_color BLUE);
|
|
Util.for_list loads (set_color RED);
|
|
|
|
let rec loop () =
|
|
match (List.filter
|
|
(fun node -> (has_color RED node) &&
|
|
List.exists (has_color BLUE) node.successors)
|
|
dag') with
|
|
[] -> ()
|
|
| i ->
|
|
begin
|
|
Util.for_list i
|
|
(fun node ->
|
|
Util.for_list node.successors (set_color RED));
|
|
loop ()
|
|
end
|
|
|
|
in loop ();
|
|
|
|
return
|
|
((List.map to_assignment (List.filter (has_color BLUE) dag')),
|
|
(List.map to_assignment (List.filter (has_color RED) dag')))
|
|
end
|
|
|
|
let isolate_precomputations_and_schedule alist =
|
|
let (a, b) = partition_precomputations alist in
|
|
Seq (schedule a, schedule b)
|
|
|