furnace/extern/fftw/genfft/gen_mdct.ml
2022-05-31 03:24:29 -05:00

257 lines
7.5 KiB
OCaml

(*
* Copyright (c) 1997-1999 Massachusetts Institute of Technology
* Copyright (c) 2003, 2007-14 Matteo Frigo
* Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
*)
(* generation of trigonometric transforms *)
open Util
open Genutil
open C
let usage = "Usage: " ^ Sys.argv.(0) ^ " -n <number>"
let uistride = ref Stride_variable
let uostride = ref Stride_variable
let uivstride = ref Stride_variable
let uovstride = ref Stride_variable
let normalization = ref 1
type mode =
| MDCT
| MDCT_MP3
| MDCT_VORBIS
| MDCT_WINDOW
| MDCT_WINDOW_SYM
| IMDCT
| IMDCT_MP3
| IMDCT_VORBIS
| IMDCT_WINDOW
| IMDCT_WINDOW_SYM
| NONE
let mode = ref NONE
let speclist = [
"-with-istride",
Arg.String(fun x -> uistride := arg_to_stride x),
" specialize for given input stride";
"-with-ostride",
Arg.String(fun x -> uostride := arg_to_stride x),
" specialize for given output stride";
"-with-ivstride",
Arg.String(fun x -> uivstride := arg_to_stride x),
" specialize for given input vector stride";
"-with-ovstride",
Arg.String(fun x -> uovstride := arg_to_stride x),
" specialize for given output vector stride";
"-normalization",
Arg.String(fun x -> normalization := int_of_string x),
" normalization integer to divide by";
"-mdct",
Arg.Unit(fun () -> mode := MDCT),
" generate an MDCT codelet";
"-mdct-mp3",
Arg.Unit(fun () -> mode := MDCT_MP3),
" generate an MDCT codelet with MP3 windowing";
"-mdct-window",
Arg.Unit(fun () -> mode := MDCT_WINDOW),
" generate an MDCT codelet with window array";
"-mdct-window-sym",
Arg.Unit(fun () -> mode := MDCT_WINDOW_SYM),
" generate an MDCT codelet with symmetric window array";
"-imdct",
Arg.Unit(fun () -> mode := IMDCT),
" generate an IMDCT codelet";
"-imdct-mp3",
Arg.Unit(fun () -> mode := IMDCT_MP3),
" generate an IMDCT codelet with MP3 windowing";
"-imdct-window",
Arg.Unit(fun () -> mode := IMDCT_WINDOW),
" generate an IMDCT codelet with window array";
"-imdct-window-sym",
Arg.Unit(fun () -> mode := IMDCT_WINDOW_SYM),
" generate an IMDCT codelet with symmetric window array";
]
let unity_window n i = Complex.one
(* MP3 window(k) = sin(pi/(2n) * (k + 1/2)) *)
let mp3_window n k =
Complex.imag (Complex.exp (8 * n) (2*k + 1))
(* Vorbis window(k) = sin(pi/2 * (mp3_window(k))^2)
... this is transcendental, though, so we can't do it with our
current Complex.exp function *)
let window_array n w =
array n (fun i ->
let stride = C.SInteger 1
and klass = Unique.make () in
let refr = C.array_subscript w stride i in
let kr = Variable.make_constant klass refr in
load_r (kr, kr))
let load_window w n i = w i
let load_window_sym w n i = w (if (i < n) then i else (2*n - 1 - i))
(* fixme: use same locations for input and output so that it works in-place? *)
(* Note: only correct for even n! *)
let load_array_mdct window n rarr iarr locations =
let twon = 2 * n in
let arr = load_array_c twon
(locative_array_c twon rarr iarr locations "BUG") in
let arrw = fun i -> Complex.times (window n i) (arr i) in
array n
((Complex.times Complex.half) @@
(fun i ->
if (i < n/2) then
Complex.uminus (Complex.plus [arrw (i + n + n/2);
arrw (n + n/2 - 1 - i)])
else
Complex.plus [arrw (i - n/2);
Complex.uminus (arrw (n + n/2 - 1 - i))]))
let store_array_mdct window n rarr iarr locations arr =
store_array_r n (locative_array_c n rarr iarr locations "BUG") arr
let load_array_imdct window n rarr iarr locations =
load_array_c n (locative_array_c n rarr iarr locations "BUG")
let store_array_imdct window n rarr iarr locations arr =
let n2 = n/2 in
let threen2 = 3*n2 in
let arr2 = fun i ->
if (i < n2) then
arr (i + n2)
else if (i < threen2) then
Complex.uminus (arr (threen2 - 1 - i))
else
Complex.uminus (arr (i - threen2))
in
let arr2w = fun i -> Complex.times (window n i) (arr2 i) in
let twon = 2 * n in
store_array_r twon (locative_array_c twon rarr iarr locations "BUG") arr2w
let window_param = function
MDCT_WINDOW -> true
| MDCT_WINDOW_SYM -> true
| IMDCT_WINDOW -> true
| IMDCT_WINDOW_SYM -> true
| _ -> false
let generate n mode =
let iarray = "I"
and oarray = "O"
and istride = "istride"
and ostride = "ostride"
and window = "W"
and name = !Magic.codelet_name in
let vistride = either_stride (!uistride) (C.SVar istride)
and vostride = either_stride (!uostride) (C.SVar ostride)
in
let sivs = stride_to_string "ovs" !uovstride in
let sovs = stride_to_string "ivs" !uivstride in
let (transform, load_input, store_output) = match mode with
| MDCT -> Trig.dctIV, load_array_mdct unity_window,
store_array_mdct unity_window
| MDCT_MP3 -> Trig.dctIV, load_array_mdct mp3_window,
store_array_mdct unity_window
| MDCT_WINDOW -> Trig.dctIV, load_array_mdct
(load_window (window_array (2 * n) window)),
store_array_mdct unity_window
| MDCT_WINDOW_SYM -> Trig.dctIV, load_array_mdct
(load_window_sym (window_array n window)),
store_array_mdct unity_window
| IMDCT -> Trig.dctIV, load_array_imdct unity_window,
store_array_imdct unity_window
| IMDCT_MP3 -> Trig.dctIV, load_array_imdct unity_window,
store_array_imdct mp3_window
| IMDCT_WINDOW -> Trig.dctIV, load_array_imdct unity_window,
store_array_imdct (load_window (window_array (2 * n) window))
| IMDCT_WINDOW_SYM -> Trig.dctIV, load_array_imdct unity_window,
store_array_imdct (load_window_sym (window_array n window))
| _ -> failwith "must specify transform kind"
in
let locations = unique_array_c (2*n) in
let input =
load_input n
(C.array_subscript iarray vistride)
(C.array_subscript "BUG" vistride)
locations
in
let output = (Complex.times (Complex.inverse_int !normalization))
@@ (transform n input) in
let odag =
store_output n
(C.array_subscript oarray vostride)
(C.array_subscript "BUG" vostride)
locations
output
in
let annot = standard_optimizer odag in
let tree =
Fcn ("void", name,
([Decl (C.constrealtypep, iarray);
Decl (C.realtypep, oarray)]
@ (if stride_fixed !uistride then []
else [Decl (C.stridetype, istride)])
@ (if stride_fixed !uostride then []
else [Decl (C.stridetype, ostride)])
@ (choose_simd []
(if stride_fixed !uivstride then [] else
[Decl ("int", sivs)]))
@ (choose_simd []
(if stride_fixed !uovstride then [] else
[Decl ("int", sovs)]))
@ (if (not (window_param mode)) then []
else [Decl (C.constrealtypep, window)])
),
finalize_fcn (Asch annot))
in
(unparse tree) ^ "\n"
let main () =
begin
parse speclist usage;
print_string (generate (check_size ()) !mode);
end
let _ = main()