furnace/src/engine/instrument.cpp

3329 lines
80 KiB
C++

/**
* Furnace Tracker - multi-system chiptune tracker
* Copyright (C) 2021-2024 tildearrow and contributors
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/
#include "dataErrors.h"
#include "engine.h"
#include "instrument.h"
#include "../ta-log.h"
#include "../fileutils.h"
const DivInstrument defaultIns;
#define _C(x) x==other.x
bool DivInstrumentFM::operator==(const DivInstrumentFM& other) {
return (
_C(alg) &&
_C(fb) &&
_C(fms) &&
_C(ams) &&
_C(fms2) &&
_C(ams2) &&
_C(ops) &&
_C(opllPreset) &&
_C(fixedDrums) &&
_C(kickFreq) &&
_C(snareHatFreq) &&
_C(tomTopFreq) &&
_C(op[0]) &&
_C(op[1]) &&
_C(op[2]) &&
_C(op[3])
);
}
bool DivInstrumentFM::Operator::operator==(const DivInstrumentFM::Operator& other) {
return (
_C(enable) &&
_C(am) &&
_C(ar) &&
_C(dr) &&
_C(mult) &&
_C(rr) &&
_C(sl) &&
_C(tl) &&
_C(dt2) &&
_C(rs) &&
_C(dt) &&
_C(d2r) &&
_C(ssgEnv) &&
_C(dam) &&
_C(dvb) &&
_C(egt) &&
_C(ksl) &&
_C(sus) &&
_C(vib) &&
_C(ws) &&
_C(ksr) &&
_C(kvs)
);
}
bool DivInstrumentGB::operator==(const DivInstrumentGB& other) {
return (
_C(envVol) &&
_C(envDir) &&
_C(envLen) &&
_C(soundLen) &&
_C(hwSeqLen) &&
_C(softEnv) &&
_C(alwaysInit) &&
_C(doubleWave)
);
}
bool DivInstrumentC64::operator==(const DivInstrumentC64& other) {
return (
_C(triOn) &&
_C(sawOn) &&
_C(pulseOn) &&
_C(noiseOn) &&
_C(a) &&
_C(d) &&
_C(s) &&
_C(r) &&
_C(duty) &&
_C(ringMod) &&
_C(oscSync) &&
_C(toFilter) &&
_C(initFilter) &&
_C(dutyIsAbs) &&
_C(filterIsAbs) &&
_C(noTest) &&
_C(res) &&
_C(cut) &&
_C(hp) &&
_C(lp) &&
_C(bp) &&
_C(ch3off)
);
}
bool DivInstrumentAmiga::operator==(const DivInstrumentAmiga& other) {
return (
_C(initSample) &&
_C(useNoteMap) &&
_C(useSample) &&
_C(useWave) &&
_C(waveLen)
);
}
bool DivInstrumentX1_010::operator==(const DivInstrumentX1_010& other) {
return _C(bankSlot);
}
bool DivInstrumentN163::operator==(const DivInstrumentN163& other) {
return (
_C(wave) &&
_C(wavePos) &&
_C(waveLen) &&
_C(waveMode) &&
_C(perChanPos) &&
_C(wavePosCh[0]) &&
_C(wavePosCh[1]) &&
_C(wavePosCh[2]) &&
_C(wavePosCh[3]) &&
_C(wavePosCh[4]) &&
_C(wavePosCh[5]) &&
_C(wavePosCh[6]) &&
_C(wavePosCh[7]) &&
_C(waveLenCh[0]) &&
_C(waveLenCh[1]) &&
_C(waveLenCh[2]) &&
_C(waveLenCh[3]) &&
_C(waveLenCh[4]) &&
_C(waveLenCh[5]) &&
_C(waveLenCh[6]) &&
_C(waveLenCh[7])
);
}
bool DivInstrumentFDS::operator==(const DivInstrumentFDS& other) {
return (
(memcmp(modTable,other.modTable,32)==0) &&
_C(modSpeed) &&
_C(modDepth) &&
_C(initModTableWithFirstWave)
);
}
bool DivInstrumentMultiPCM::operator==(const DivInstrumentMultiPCM& other) {
return (
_C(ar) &&
_C(d1r) &&
_C(dl) &&
_C(d2r) &&
_C(rr) &&
_C(rc) &&
_C(lfo) &&
_C(vib) &&
_C(am)
);
}
bool DivInstrumentWaveSynth::operator==(const DivInstrumentWaveSynth& other) {
return (
_C(wave1) &&
_C(wave2) &&
_C(rateDivider) &&
_C(effect) &&
_C(oneShot) &&
_C(enabled) &&
_C(global) &&
_C(speed) &&
_C(param1) &&
_C(param2) &&
_C(param3) &&
_C(param4)
);
}
bool DivInstrumentSoundUnit::operator==(const DivInstrumentSoundUnit& other) {
return (
_C(switchRoles) &&
_C(hwSeqLen)
);
}
bool DivInstrumentES5506::operator==(const DivInstrumentES5506& other) {
return (
_C(filter.mode) &&
_C(filter.k1) &&
_C(filter.k2) &&
_C(envelope.ecount) &&
_C(envelope.lVRamp) &&
_C(envelope.rVRamp) &&
_C(envelope.k1Ramp) &&
_C(envelope.k2Ramp) &&
_C(envelope.k1Slow) &&
_C(envelope.k2Slow)
);
}
bool DivInstrumentSNES::operator==(const DivInstrumentSNES& other) {
return (
_C(useEnv) &&
_C(sus) &&
_C(gainMode) &&
_C(gain) &&
_C(a) &&
_C(d) &&
_C(s) &&
_C(r) &&
_C(d2)
);
}
bool DivInstrumentESFM::operator==(const DivInstrumentESFM& other) {
return (
_C(noise) &&
_C(op[0]) &&
_C(op[1]) &&
_C(op[2]) &&
_C(op[3])
);
}
bool DivInstrumentESFM::Operator::operator==(const DivInstrumentESFM::Operator& other) {
return (
_C(delay) &&
_C(outLvl) &&
_C(modIn) &&
_C(left) &&
_C(right) &&
_C(fixed) &&
_C(ct) &&
_C(dt)
);
}
bool DivInstrumentPowerNoise::operator==(const DivInstrumentPowerNoise& other) {
return _C(octave);
}
bool DivInstrumentSID2::operator==(const DivInstrumentSID2& other) {
return (
_C(volume) &&
_C(mixMode) &&
_C(noiseMode)
);
}
#undef _C
#define CONSIDER(x,t) \
case t: \
return &x; \
break;
DivInstrumentMacro* DivInstrumentSTD::macroByType(DivMacroType type) {
switch (type) {
CONSIDER(volMacro,DIV_MACRO_VOL)
CONSIDER(arpMacro,DIV_MACRO_ARP)
CONSIDER(dutyMacro,DIV_MACRO_DUTY)
CONSIDER(waveMacro,DIV_MACRO_WAVE)
CONSIDER(pitchMacro,DIV_MACRO_PITCH)
CONSIDER(ex1Macro,DIV_MACRO_EX1)
CONSIDER(ex2Macro,DIV_MACRO_EX2)
CONSIDER(ex3Macro,DIV_MACRO_EX3)
CONSIDER(algMacro,DIV_MACRO_ALG)
CONSIDER(fbMacro,DIV_MACRO_FB)
CONSIDER(fmsMacro,DIV_MACRO_FMS)
CONSIDER(amsMacro,DIV_MACRO_AMS)
CONSIDER(panLMacro,DIV_MACRO_PAN_LEFT)
CONSIDER(panRMacro,DIV_MACRO_PAN_RIGHT)
CONSIDER(phaseResetMacro,DIV_MACRO_PHASE_RESET)
CONSIDER(ex4Macro,DIV_MACRO_EX4)
CONSIDER(ex5Macro,DIV_MACRO_EX5)
CONSIDER(ex6Macro,DIV_MACRO_EX6)
CONSIDER(ex7Macro,DIV_MACRO_EX7)
CONSIDER(ex8Macro,DIV_MACRO_EX8)
}
return NULL;
}
#undef CONSIDER
#define FEATURE_BEGIN(x) \
w->write(x,2); \
size_t featStartSeek=w->tell(); \
w->writeS(0);
#define FEATURE_END \
size_t featEndSeek=w->tell(); \
w->seek(featStartSeek,SEEK_SET); \
w->writeS(featEndSeek-featStartSeek-2); \
w->seek(featEndSeek,SEEK_SET);
void DivInstrument::writeFeatureNA(SafeWriter* w) {
FEATURE_BEGIN("NA");
w->writeString(name,false);
FEATURE_END;
}
void DivInstrument::writeFeatureFM(SafeWriter* w, bool fui) {
FEATURE_BEGIN("FM");
int opCount=4;
if (fui) {
if (type==DIV_INS_OPLL) {
opCount=2;
} else if (type==DIV_INS_OPL) {
opCount=(fm.ops==4)?4:2;
}
}
w->writeC(
(fm.op[3].enable?128:0)|
(fm.op[2].enable?64:0)|
(fm.op[1].enable?32:0)|
(fm.op[0].enable?16:0)|
opCount
);
// base data
w->writeC(((fm.alg&7)<<4)|(fm.fb&7));
w->writeC(((fm.fms2&7)<<5)|((fm.ams&3)<<3)|(fm.fms&7));
w->writeC(((fm.ams2&3)<<6)|((fm.ops==4)?32:0)|(fm.opllPreset&31));
// operator data
for (int i=0; i<opCount; i++) {
DivInstrumentFM::Operator& op=fm.op[i];
w->writeC((op.ksr?128:0)|((op.dt&7)<<4)|(op.mult&15));
w->writeC((op.sus?128:0)|(op.tl&127));
w->writeC(((op.rs&3)<<6)|(op.vib?32:0)|(op.ar&31));
w->writeC((op.am?128:0)|((op.ksl&3)<<5)|(op.dr&31));
w->writeC((op.egt?128:0)|((op.kvs&3)<<5)|(op.d2r&31));
w->writeC(((op.sl&15)<<4)|(op.rr&15));
w->writeC(((op.dvb&15)<<4)|(op.ssgEnv&15));
w->writeC(((op.dam&7)<<5)|((op.dt2&3)<<3)|(op.ws&7));
}
FEATURE_END;
}
void DivInstrument::writeMacro(SafeWriter* w, const DivInstrumentMacro& m) {
if (!m.len) return;
// determine word size
int macroMin=0x7fffffff;
int macroMax=0x80000000;
for (int i=0; i<m.len; i++) {
if (m.val[i]<macroMin) macroMin=m.val[i];
if (m.val[i]>macroMax) macroMax=m.val[i];
}
unsigned char wordSize=192; // 32-bit
if (macroMin>=0 && macroMax<=255) {
wordSize=0; // 8-bit unsigned
} else if (macroMin>=-128 && macroMax<=127) {
wordSize=64; // 8-bit signed
} else if (macroMin>=-32768 && macroMax<=32767) {
wordSize=128; // 16-bit signed
} else {
wordSize=192; // 32-bit signed
}
w->writeC(m.macroType&31);
w->writeC(m.len);
w->writeC(m.loop);
w->writeC(m.rel);
w->writeC(m.mode);
w->writeC((m.open&0x3f)|wordSize);
w->writeC(m.delay);
w->writeC(m.speed);
switch (wordSize) {
case 0:
for (int i=0; i<m.len; i++) {
w->writeC((unsigned char)m.val[i]);
}
break;
case 64:
for (int i=0; i<m.len; i++) {
w->writeC((signed char)m.val[i]);
}
break;
case 128:
for (int i=0; i<m.len; i++) {
w->writeS((short)m.val[i]);
}
break;
default: // 192
for (int i=0; i<m.len; i++) {
w->writeI(m.val[i]);
}
break;
}
}
void DivInstrument::writeFeatureMA(SafeWriter* w) {
FEATURE_BEGIN("MA");
// if you update the macro header, please update this value as well.
// it's the length.
w->writeS(8);
// write macros
writeMacro(w,std.volMacro);
writeMacro(w,std.arpMacro);
writeMacro(w,std.dutyMacro);
writeMacro(w,std.waveMacro);
writeMacro(w,std.pitchMacro);
writeMacro(w,std.ex1Macro);
writeMacro(w,std.ex2Macro);
writeMacro(w,std.ex3Macro);
writeMacro(w,std.algMacro);
writeMacro(w,std.fbMacro);
writeMacro(w,std.fmsMacro);
writeMacro(w,std.amsMacro);
writeMacro(w,std.panLMacro);
writeMacro(w,std.panRMacro);
writeMacro(w,std.phaseResetMacro);
writeMacro(w,std.ex4Macro);
writeMacro(w,std.ex5Macro);
writeMacro(w,std.ex6Macro);
writeMacro(w,std.ex7Macro);
writeMacro(w,std.ex8Macro);
// "stop reading" code
w->writeC(-1);
FEATURE_END;
}
void DivInstrument::writeFeature64(SafeWriter* w) {
FEATURE_BEGIN("64");
w->writeC(
(c64.dutyIsAbs?0x80:0)|
(c64.initFilter?0x40:0)|
(c64.toFilter?0x10:0)|
(c64.noiseOn?8:0)|
(c64.pulseOn?4:0)|
(c64.sawOn?2:0)|
(c64.triOn?1:0)
);
w->writeC(
(c64.oscSync?0x80:0)|
(c64.ringMod?0x40:0)|
(c64.noTest?0x20:0)|
(c64.filterIsAbs?0x10:0)|
(c64.ch3off?8:0)|
(c64.bp?4:0)|
(c64.hp?2:0)|
(c64.lp?1:0)
);
w->writeC(((c64.a&15)<<4)|(c64.d&15));
w->writeC(((c64.s&15)<<4)|(c64.r&15));
w->writeS(c64.duty);
w->writeS((unsigned short)((c64.cut&4095)|((c64.res&15)<<12)));
w->writeC((c64.res>>4)&15);
FEATURE_END;
}
void DivInstrument::writeFeatureGB(SafeWriter* w) {
FEATURE_BEGIN("GB");
w->writeC(((gb.envLen&7)<<5)|(gb.envDir?16:0)|(gb.envVol&15));
w->writeC(gb.soundLen);
w->writeC(
(gb.doubleWave?4:0)|
(gb.alwaysInit?2:0)|
(gb.softEnv?1:0)
);
w->writeC(gb.hwSeqLen);
for (int i=0; i<gb.hwSeqLen; i++) {
w->writeC(gb.hwSeq[i].cmd);
w->writeS(gb.hwSeq[i].data);
}
FEATURE_END;
}
void DivInstrument::writeFeatureSM(SafeWriter* w) {
FEATURE_BEGIN("SM");
w->writeS(amiga.initSample);
w->writeC(
(amiga.useWave?4:0)|
(amiga.useSample?2:0)|
(amiga.useNoteMap?1:0)
);
w->writeC(amiga.waveLen);
if (amiga.useNoteMap) {
for (int note=0; note<120; note++) {
w->writeS(amiga.noteMap[note].freq);
w->writeS(amiga.noteMap[note].map);
}
}
FEATURE_END;
}
void DivInstrument::writeFeatureOx(SafeWriter* w, int ope) {
char opCode[3];
opCode[0]='O';
opCode[1]='1'+ope;
opCode[2]=0;
FEATURE_BEGIN(opCode);
// if you update the macro header, please update this value as well.
// it's the length.
w->writeS(8);
// write macros
const DivInstrumentSTD::OpMacro& o=std.opMacros[ope];
writeMacro(w,o.amMacro);
writeMacro(w,o.arMacro);
writeMacro(w,o.drMacro);
writeMacro(w,o.multMacro);
writeMacro(w,o.rrMacro);
writeMacro(w,o.slMacro);
writeMacro(w,o.tlMacro);
writeMacro(w,o.dt2Macro);
writeMacro(w,o.rsMacro);
writeMacro(w,o.dtMacro);
writeMacro(w,o.d2rMacro);
writeMacro(w,o.ssgMacro);
writeMacro(w,o.damMacro);
writeMacro(w,o.dvbMacro);
writeMacro(w,o.egtMacro);
writeMacro(w,o.kslMacro);
writeMacro(w,o.susMacro);
writeMacro(w,o.vibMacro);
writeMacro(w,o.wsMacro);
writeMacro(w,o.ksrMacro);
// "stop reading" code
w->writeC(-1);
FEATURE_END;
}
void DivInstrument::writeFeatureLD(SafeWriter* w) {
FEATURE_BEGIN("LD");
w->writeC(fm.fixedDrums);
w->writeS(fm.kickFreq);
w->writeS(fm.snareHatFreq);
w->writeS(fm.tomTopFreq);
FEATURE_END;
}
void DivInstrument::writeFeatureSN(SafeWriter* w) {
FEATURE_BEGIN("SN");
w->writeC(((snes.d&7)<<4)|(snes.a&15));
w->writeC(((snes.s&7)<<5)|(snes.r&31));
w->writeC(
(snes.useEnv?16:0)|
(snes.sus?8:0)|
(snes.gainMode)
);
w->writeC(snes.gain);
w->writeC(((snes.sus&3)<<5)|(snes.d2&31));
FEATURE_END;
}
void DivInstrument::writeFeatureN1(SafeWriter* w) {
FEATURE_BEGIN("N1");
w->writeI(n163.wave);
w->writeC(n163.wavePos);
w->writeC(n163.waveLen);
w->writeC(n163.waveMode);
w->writeC(n163.perChanPos);
if (n163.perChanPos) {
for (int i=0; i<8; i++) {
w->writeC(n163.wavePosCh[i]);
}
for (int i=0; i<8; i++) {
w->writeC(n163.waveLenCh[i]);
}
}
FEATURE_END;
}
void DivInstrument::writeFeatureFD(SafeWriter* w) {
FEATURE_BEGIN("FD");
w->writeI(fds.modSpeed);
w->writeI(fds.modDepth);
w->writeC(fds.initModTableWithFirstWave);
w->write(fds.modTable,32);
FEATURE_END;
}
void DivInstrument::writeFeatureWS(SafeWriter* w) {
FEATURE_BEGIN("WS");
w->writeI(ws.wave1);
w->writeI(ws.wave2);
w->writeC(ws.rateDivider);
w->writeC(ws.effect);
w->writeC(ws.enabled);
w->writeC(ws.global);
w->writeC(ws.speed);
w->writeC(ws.param1);
w->writeC(ws.param2);
w->writeC(ws.param3);
w->writeC(ws.param4);
FEATURE_END;
}
size_t DivInstrument::writeFeatureSL(SafeWriter* w, std::vector<int>& list, const DivSong* song) {
bool sampleUsed[256];
memset(sampleUsed,0,256*sizeof(bool));
if (amiga.initSample>=0 && amiga.initSample<(int)song->sample.size()) {
sampleUsed[amiga.initSample]=true;
}
if (amiga.useNoteMap) {
for (int i=0; i<120; i++) {
if (amiga.noteMap[i].map>=0 && amiga.noteMap[i].map<(int)song->sample.size()) {
sampleUsed[amiga.noteMap[i].map]=true;
}
}
}
for (size_t i=0; i<song->sample.size(); i++) {
if (sampleUsed[i]) {
list.push_back(i);
}
}
if (list.empty()) return 0;
FEATURE_BEGIN("SL");
w->writeC(list.size());
for (int i: list) {
w->writeC(i);
}
size_t ret=w->tell();
// pointers (these will be filled later)
for (size_t i=0; i<list.size(); i++) {
w->writeI(0);
}
FEATURE_END;
return ret;
}
size_t DivInstrument::writeFeatureWL(SafeWriter* w, std::vector<int>& list, const DivSong* song) {
bool waveUsed[256];
memset(waveUsed,0,256*sizeof(bool));
for (int i=0; i<std.waveMacro.len; i++) {
if (std.waveMacro.val[i]>=0 && std.waveMacro.val[i]<(int)song->wave.size()) {
waveUsed[std.waveMacro.val[i]]=true;
}
}
if (ws.enabled) {
if (ws.wave1>=0 && ws.wave1<(int)song->wave.size()) {
waveUsed[ws.wave1]=true;
}
if ((ws.effect&0x80) && ws.wave2>=0 && ws.wave2<(int)song->wave.size()) {
waveUsed[ws.wave2]=true;
}
}
for (size_t i=0; i<song->wave.size(); i++) {
if (waveUsed[i]) {
list.push_back(i);
}
}
if (list.empty()) return 0;
FEATURE_BEGIN("WL");
w->writeC(list.size());
for (int i: list) {
w->writeC(i);
}
size_t ret=w->tell();
// pointers (these will be filled later)
for (size_t i=0; i<list.size(); i++) {
w->writeI(0);
}
FEATURE_END;
return ret;
}
void DivInstrument::writeFeatureMP(SafeWriter* w) {
FEATURE_BEGIN("MP");
w->writeC(multipcm.ar);
w->writeC(multipcm.d1r);
w->writeC(multipcm.dl);
w->writeC(multipcm.d2r);
w->writeC(multipcm.rr);
w->writeC(multipcm.rc);
w->writeC(multipcm.lfo);
w->writeC(multipcm.vib);
w->writeC(multipcm.am);
FEATURE_END;
}
void DivInstrument::writeFeatureSU(SafeWriter* w) {
FEATURE_BEGIN("SU");
w->writeC(su.switchRoles);
w->writeC(su.hwSeqLen);
for (int i=0; i<su.hwSeqLen; i++) {
w->writeC(su.hwSeq[i].cmd);
w->writeC(su.hwSeq[i].bound);
w->writeC(su.hwSeq[i].val);
w->writeS(su.hwSeq[i].speed);
}
FEATURE_END;
}
void DivInstrument::writeFeatureES(SafeWriter* w) {
FEATURE_BEGIN("ES");
w->writeC(es5506.filter.mode);
w->writeS(es5506.filter.k1);
w->writeS(es5506.filter.k2);
w->writeS(es5506.envelope.ecount);
w->writeC(es5506.envelope.lVRamp);
w->writeC(es5506.envelope.rVRamp);
w->writeC(es5506.envelope.k1Ramp);
w->writeC(es5506.envelope.k2Ramp);
w->writeC(es5506.envelope.k1Slow);
w->writeC(es5506.envelope.k2Slow);
FEATURE_END;
}
void DivInstrument::writeFeatureX1(SafeWriter* w) {
FEATURE_BEGIN("X1");
w->writeI(x1_010.bankSlot);
FEATURE_END;
}
void DivInstrument::writeFeatureNE(SafeWriter* w) {
FEATURE_BEGIN("NE");
w->writeC(amiga.useNoteMap?1:0);
if (amiga.useNoteMap) {
for (int note=0; note<120; note++) {
w->writeC(amiga.noteMap[note].dpcmFreq);
w->writeC(amiga.noteMap[note].dpcmDelta);
}
}
FEATURE_END;
}
void DivInstrument::writeFeatureEF(SafeWriter* w) {
FEATURE_BEGIN("EF");
w->writeC(esfm.noise&3);
for (int i=0; i<4; i++) {
DivInstrumentESFM::Operator& op=esfm.op[i];
w->writeC(((op.delay&7)<<5)|((op.outLvl&7)<<2)|((op.right&1)<<1)|(op.left&1));
w->writeC((op.fixed&1)<<3|(op.modIn&7));
w->writeC(op.ct);
w->writeC(op.dt);
}
FEATURE_END;
}
void DivInstrument::writeFeaturePN(SafeWriter* w) {
FEATURE_BEGIN("PN");
w->writeC(powernoise.octave);
FEATURE_END;
}
void DivInstrument::writeFeatureS2(SafeWriter* w) {
FEATURE_BEGIN("S2");
w->writeC((sid2.volume&15)|((sid2.mixMode&3)<<4)|((sid2.noiseMode&3)<<6));
FEATURE_END;
}
void DivInstrument::putInsData2(SafeWriter* w, bool fui, const DivSong* song, bool insName) {
size_t blockStartSeek=0;
size_t blockEndSeek=0;
size_t slSeek=0;
size_t wlSeek=0;
std::vector<int> waveList;
std::vector<int> sampleList;
std::vector<unsigned int> wavePtr;
std::vector<unsigned int> samplePtr;
if (fui) {
w->write("FINS",4);
} else {
w->write("INS2",4);
blockStartSeek=w->tell();
w->writeI(0);
}
w->writeS(DIV_ENGINE_VERSION);
w->writeC(type);
w->writeC(0);
// write features
bool featureNA=false;
bool featureFM=false;
bool featureMA=false;
bool feature64=false;
bool featureGB=false;
bool featureSM=false;
bool featureOx[4];
bool featureLD=false;
bool featureSN=false;
bool featureN1=false;
bool featureFD=false;
bool featureWS=false;
bool featureSL=false;
bool featureWL=false;
bool featureMP=false;
bool featureSU=false;
bool featureES=false;
bool featureX1=false;
bool featureNE=false;
bool featureEF=false;
bool featurePN=false;
bool featureS2=false;
bool checkForWL=false;
featureOx[0]=false;
featureOx[1]=false;
featureOx[2]=false;
featureOx[3]=false;
// turn on base features if .fui
if (fui) {
switch (type) {
case DIV_INS_STD:
break;
case DIV_INS_FM:
featureFM=true;
break;
case DIV_INS_GB:
featureGB=true;
checkForWL=true;
if (ws.enabled) featureWS=true;
break;
case DIV_INS_C64:
feature64=true;
break;
case DIV_INS_AMIGA:
featureSM=true;
if (!amiga.useWave) featureSL=true;
break;
case DIV_INS_PCE:
checkForWL=true;
featureSM=true;
if (amiga.useSample) featureSL=true;
if (ws.enabled) featureWS=true;
break;
case DIV_INS_AY:
featureSM=true;
if (amiga.useSample) featureSL=true;
break;
case DIV_INS_AY8930:
featureSM=true;
if (amiga.useSample) featureSL=true;
break;
case DIV_INS_TIA:
break;
case DIV_INS_SAA1099:
break;
case DIV_INS_VIC:
break;
case DIV_INS_PET:
break;
case DIV_INS_VRC6:
featureSM=true;
if (amiga.useSample) featureSL=true;
break;
case DIV_INS_OPLL:
featureFM=true;
if (fm.fixedDrums) featureLD=true;
break;
case DIV_INS_OPL:
featureFM=true;
if (fm.fixedDrums) featureLD=true;
break;
case DIV_INS_FDS:
checkForWL=true;
featureFD=true;
if (ws.enabled) featureWS=true;
break;
case DIV_INS_VBOY:
checkForWL=true;
featureFD=true;
if (ws.enabled) featureWS=true;
break;
case DIV_INS_N163:
checkForWL=true;
featureN1=true;
if (ws.enabled) featureWS=true;
break;
case DIV_INS_SCC:
checkForWL=true;
if (ws.enabled) featureWS=true;
break;
case DIV_INS_OPZ:
featureFM=true;
break;
case DIV_INS_POKEY:
break;
case DIV_INS_BEEPER:
break;
case DIV_INS_SWAN:
checkForWL=true;
featureSM=true;
if (amiga.useSample) featureSL=true;
if (ws.enabled) featureWS=true;
break;
case DIV_INS_MIKEY:
featureSM=true;
if (amiga.useSample) featureSL=true;
break;
case DIV_INS_VERA:
break;
case DIV_INS_X1_010:
checkForWL=true;
featureX1=true;
featureSM=true;
if (amiga.useSample) featureSL=true;
if (ws.enabled) featureWS=true;
break;
case DIV_INS_VRC6_SAW:
break;
case DIV_INS_ES5506:
featureSM=true;
featureSL=true;
featureES=true;
break;
case DIV_INS_MULTIPCM:
featureSM=true;
featureSL=true;
featureMP=true;
break;
case DIV_INS_SNES:
featureSM=true;
if (!amiga.useWave) featureSL=true;
featureSN=true;
checkForWL=true;
if (ws.enabled) featureWS=true;
break;
case DIV_INS_SU:
featureSM=true;
if (amiga.useSample) featureSL=true;
featureSU=true;
break;
case DIV_INS_NAMCO:
checkForWL=true;
if (ws.enabled) featureWS=true;
break;
case DIV_INS_OPL_DRUMS:
featureFM=true;
if (fm.fixedDrums) featureLD=true;
break;
case DIV_INS_OPM:
featureFM=true;
break;
case DIV_INS_NES:
featureSM=true;
featureNE=true;
featureSL=true;
break;
case DIV_INS_MSM6258:
featureSM=true;
featureSL=true;
break;
case DIV_INS_MSM6295:
featureSM=true;
featureSL=true;
break;
case DIV_INS_ADPCMA:
featureSM=true;
featureSL=true;
break;
case DIV_INS_ADPCMB:
featureSM=true;
featureSL=true;
break;
case DIV_INS_SEGAPCM:
featureSM=true;
featureSL=true;
break;
case DIV_INS_QSOUND:
featureSM=true;
featureSL=true;
break;
case DIV_INS_YMZ280B:
featureSM=true;
featureSL=true;
break;
case DIV_INS_RF5C68:
featureSM=true;
featureSL=true;
break;
case DIV_INS_MSM5232:
break;
case DIV_INS_T6W28:
break;
case DIV_INS_K007232:
featureSM=true;
featureSL=true;
break;
case DIV_INS_GA20:
featureSM=true;
featureSL=true;
break;
case DIV_INS_POKEMINI:
break;
case DIV_INS_SM8521:
checkForWL=true;
if (ws.enabled) featureWS=true;
break;
case DIV_INS_PV1000:
break;
case DIV_INS_K053260:
featureSM=true;
featureSL=true;
break;
case DIV_INS_TED:
break;
case DIV_INS_C140:
featureSM=true;
featureSL=true;
break;
case DIV_INS_C219:
featureSM=true;
featureSL=true;
break;
case DIV_INS_ESFM:
featureFM=true;
featureEF=true;
break;
case DIV_INS_POWERNOISE:
featurePN=true;
break;
case DIV_INS_POWERNOISE_SLOPE:
featurePN=true;
break;
case DIV_INS_DAVE:
break;
case DIV_INS_NDS:
featureSM=true;
if (amiga.useSample) featureSL=true;
break;
case DIV_INS_GBA_DMA:
featureSM=true;
featureSL=true;
break;
case DIV_INS_GBA_MINMOD:
featureSM=true;
featureSL=true;
break;
case DIV_INS_BIFURCATOR:
break;
case DIV_INS_SID2:
feature64=true;
featureS2=true;
break;
case DIV_INS_MAX:
break;
case DIV_INS_NULL:
break;
}
} else {
// turn on features depending on what is set
// almost 40 years of C++, and there still isn't an official way to easily compare two structs.
// even Java, which many regard as having a slow runtime, has .equals().
if (fm!=defaultIns.fm) {
featureFM=true;
featureLD=true;
}
if (c64!=defaultIns.c64) {
feature64=true;
}
if (gb!=defaultIns.gb) {
featureGB=true;
}
if (amiga!=defaultIns.amiga) {
featureSM=true;
featureNE=true;
}
if (snes!=defaultIns.snes) {
featureSN=true;
}
if (n163!=defaultIns.n163) {
featureN1=true;
}
if (fds!=defaultIns.fds) {
featureFD=true;
}
if (ws!=defaultIns.ws) {
featureWS=true;
}
if (multipcm!=defaultIns.multipcm) {
featureMP=true;
}
if (su!=defaultIns.su) {
featureSU=true;
}
if (es5506!=defaultIns.es5506) {
featureES=true;
}
if (x1_010!=defaultIns.x1_010) {
featureX1=true;
}
if (esfm!=defaultIns.esfm) {
featureEF=true;
}
if (powernoise!=defaultIns.powernoise) {
featurePN=true;
}
if (sid2!=defaultIns.sid2) {
featureS2=true;
}
}
// check ins name
if (!name.empty() && insName) {
featureNA=true;
}
// check macros
if (std.volMacro.len ||
std.arpMacro.len ||
std.dutyMacro.len ||
std.waveMacro.len ||
std.pitchMacro.len ||
std.ex1Macro.len ||
std.ex2Macro.len ||
std.ex3Macro.len ||
std.algMacro.len ||
std.fbMacro.len ||
std.fmsMacro.len ||
std.amsMacro.len ||
std.panLMacro.len ||
std.panRMacro.len ||
std.phaseResetMacro.len ||
std.ex4Macro.len ||
std.ex5Macro.len ||
std.ex6Macro.len ||
std.ex7Macro.len ||
std.ex8Macro.len) {
featureMA=true;
}
// check whether to write wavetable list
if (checkForWL && fui) {
if (std.waveMacro.len || ws.enabled) {
featureWL=true;
}
}
if (featureFM || !fui) {
// check FM macros
int opCount=4;
bool storeExtendedAsWell=true;
if (fui) {
if (type==DIV_INS_OPLL) {
opCount=2;
} else if (type==DIV_INS_OPL) {
opCount=(fm.ops==4)?4:2;
} else if (type==DIV_INS_FM || type==DIV_INS_OPM) {
storeExtendedAsWell=false;
}
}
for (int i=0; i<opCount; i++) {
const DivInstrumentSTD::OpMacro& m=std.opMacros[i];
if (m.amMacro.len ||
m.arMacro.len ||
m.drMacro.len ||
m.multMacro.len ||
m.rrMacro.len ||
m.slMacro.len ||
m.tlMacro.len ||
m.dt2Macro.len ||
m.rsMacro.len ||
m.dtMacro.len ||
m.d2rMacro.len ||
m.ssgMacro.len) {
featureOx[i]=true;
}
if (storeExtendedAsWell) {
if (m.damMacro.len ||
m.dvbMacro.len ||
m.egtMacro.len ||
m.kslMacro.len ||
m.susMacro.len ||
m.vibMacro.len ||
m.wsMacro.len ||
m.ksrMacro.len) {
featureOx[i]=true;
}
}
}
}
// write features
if (featureNA) {
writeFeatureNA(w);
}
if (featureFM) {
writeFeatureFM(w,fui);
}
if (featureMA) {
writeFeatureMA(w);
}
if (feature64) {
writeFeature64(w);
}
if (featureGB) {
writeFeatureGB(w);
}
if (featureSM) {
writeFeatureSM(w);
}
for (int i=0; i<4; i++) {
if (featureOx[i]) {
writeFeatureOx(w,i);
}
}
if (featureLD) {
writeFeatureLD(w);
}
if (featureSN) {
writeFeatureSN(w);
}
if (featureN1) {
writeFeatureN1(w);
}
if (featureFD) {
writeFeatureFD(w);
}
if (featureWS) {
writeFeatureWS(w);
}
if (featureSL) {
slSeek=writeFeatureSL(w,sampleList,song);
}
if (featureWL) {
wlSeek=writeFeatureWL(w,waveList,song);
}
if (featureMP) {
writeFeatureMP(w);
}
if (featureSU) {
writeFeatureSU(w);
}
if (featureES) {
writeFeatureES(w);
}
if (featureX1) {
writeFeatureX1(w);
}
if (featureNE) {
writeFeatureNE(w);
}
if (featureEF) {
writeFeatureEF(w);
}
if (featurePN) {
writeFeaturePN(w);
}
if (featureS2) {
writeFeatureS2(w);
}
if (fui && (featureSL || featureWL)) {
w->write("EN",2);
if (wlSeek!=0 && !waveList.empty()) {
for (int i: waveList) {
if (i<0 || i>=(int)song->wave.size()) {
wavePtr.push_back(0);
continue;
}
DivWavetable* wave=song->wave[i];
wavePtr.push_back(w->tell());
wave->putWaveData(w);
}
w->seek(wlSeek,SEEK_SET);
for (unsigned int i: wavePtr) {
w->writeI(i);
}
w->seek(0,SEEK_END);
}
if (slSeek!=0 && !sampleList.empty()) {
for (int i: sampleList) {
if (i<0 || i>=(int)song->sample.size()) {
samplePtr.push_back(0);
continue;
}
DivSample* sample=song->sample[i];
samplePtr.push_back(w->tell());
sample->putSampleData(w);
}
w->seek(slSeek,SEEK_SET);
for (unsigned int i: samplePtr) {
w->writeI(i);
}
w->seek(0,SEEK_END);
}
}
if (!fui) {
w->write("EN",2);
}
blockEndSeek=w->tell();
if (!fui) {
w->seek(blockStartSeek,SEEK_SET);
w->writeI(blockEndSeek-blockStartSeek-4);
}
w->seek(0,SEEK_END);
}
#define READ_FEAT_BEGIN \
unsigned short featLen=reader.readS(); \
size_t endOfFeat=reader.tell()+featLen;
#define READ_FEAT_END \
if (reader.tell()<endOfFeat) reader.seek(endOfFeat,SEEK_SET);
void DivInstrument::readFeatureNA(SafeReader& reader, short version) {
READ_FEAT_BEGIN;
name=reader.readString();
READ_FEAT_END;
}
void DivInstrument::readFeatureFM(SafeReader& reader, short version) {
READ_FEAT_BEGIN;
unsigned char opCount=reader.readC();
fm.op[0].enable=(opCount&16);
fm.op[1].enable=(opCount&32);
fm.op[2].enable=(opCount&64);
fm.op[3].enable=(opCount&128);
opCount&=15;
unsigned char next=reader.readC();
fm.alg=(next>>4)&7;
fm.fb=next&7;
next=reader.readC();
fm.fms2=(next>>5)&7;
fm.ams=(next>>3)&3;
fm.fms=next&7;
next=reader.readC();
fm.ams2=(next>>6)&3;
fm.ops=(next&32)?4:2;
fm.opllPreset=next&31;
// read operators
for (int i=0; i<opCount; i++) {
DivInstrumentFM::Operator& op=fm.op[i];
next=reader.readC();
op.ksr=(next&128)?1:0;
op.dt=(next>>4)&7;
op.mult=next&15;
next=reader.readC();
op.sus=(next&128)?1:0;
op.tl=next&127;
next=reader.readC();
op.rs=(next>>6)&3;
op.vib=(next&32)?1:0;
op.ar=next&31;
next=reader.readC();
op.am=(next&128)?1:0;
op.ksl=(next>>5)&3;
op.dr=next&31;
next=reader.readC();
op.egt=(next&128)?1:0;
op.kvs=(next>>5)&3;
op.d2r=next&31;
next=reader.readC();
op.sl=(next>>4)&15;
op.rr=next&15;
next=reader.readC();
op.dvb=(next>>4)&15;
op.ssgEnv=next&15;
next=reader.readC();
op.dam=(next>>5)&7;
op.dt2=(next>>3)&3;
op.ws=next&7;
}
READ_FEAT_END;
}
void DivInstrument::readFeatureMA(SafeReader& reader, short version) {
READ_FEAT_BEGIN;
unsigned short macroHeaderLen=reader.readS();
if (macroHeaderLen==0) {
logW("invalid macro header length!");
READ_FEAT_END;
return;
}
DivInstrumentMacro* target=&std.volMacro;
while (reader.tell()<endOfFeat) {
size_t endOfMacroHeader=reader.tell()+macroHeaderLen;
unsigned char macroCode=reader.readC();
// end of macro list
if (macroCode==255) break;
switch (macroCode) {
case 0:
target=&std.volMacro;
break;
case 1:
target=&std.arpMacro;
break;
case 2:
target=&std.dutyMacro;
break;
case 3:
target=&std.waveMacro;
break;
case 4:
target=&std.pitchMacro;
break;
case 5:
target=&std.ex1Macro;
break;
case 6:
target=&std.ex2Macro;
break;
case 7:
target=&std.ex3Macro;
break;
case 8:
target=&std.algMacro;
break;
case 9:
target=&std.fbMacro;
break;
case 10:
target=&std.fmsMacro;
break;
case 11:
target=&std.amsMacro;
break;
case 12:
target=&std.panLMacro;
break;
case 13:
target=&std.panRMacro;
break;
case 14:
target=&std.phaseResetMacro;
break;
case 15:
target=&std.ex4Macro;
break;
case 16:
target=&std.ex5Macro;
break;
case 17:
target=&std.ex6Macro;
break;
case 18:
target=&std.ex7Macro;
break;
case 19:
target=&std.ex8Macro;
break;
default:
logW("invalid macro code %d!");
break;
}
target->len=reader.readC();
target->loop=reader.readC();
target->rel=reader.readC();
target->mode=reader.readC();
unsigned char wordSize=reader.readC();
target->open=wordSize&15;
wordSize>>=6;
target->delay=reader.readC();
target->speed=reader.readC();
reader.seek(endOfMacroHeader,SEEK_SET);
// read macro
switch (wordSize) {
case 0:
for (int i=0; i<target->len; i++) {
target->val[i]=(unsigned char)reader.readC();
}
break;
case 1:
for (int i=0; i<target->len; i++) {
target->val[i]=(signed char)reader.readC();
}
break;
case 2:
for (int i=0; i<target->len; i++) {
target->val[i]=reader.readS();
}
break;
default:
for (int i=0; i<target->len; i++) {
target->val[i]=reader.readI();
}
break;
}
}
if (version<193) {
if (type==DIV_INS_AY || type==DIV_INS_AY8930) {
for (int j=0; j<std.waveMacro.len; j++) {
std.waveMacro.val[j]++;
}
}
}
READ_FEAT_END;
}
void DivInstrument::readFeature64(SafeReader& reader, bool& volIsCutoff, short version) {
READ_FEAT_BEGIN;
unsigned char next=reader.readC();
c64.dutyIsAbs=next&128;
c64.initFilter=next&64;
volIsCutoff=next&32;
c64.toFilter=next&16;
c64.noiseOn=next&8;
c64.pulseOn=next&4;
c64.sawOn=next&2;
c64.triOn=next&1;
next=reader.readC();
c64.oscSync=(next&128)?1:0;
c64.ringMod=(next&64)?1:0;
c64.noTest=next&32;
c64.filterIsAbs=next&16;
c64.ch3off=next&8;
c64.bp=next&4;
c64.hp=next&2;
c64.lp=next&1;
next=reader.readC();
c64.a=(next>>4)&15;
c64.d=next&15;
next=reader.readC();
c64.s=(next>>4)&15;
c64.r=next&15;
c64.duty=reader.readS()&4095;
unsigned short cr=reader.readS();
c64.cut=cr&4095;
c64.res=cr>>12;
if (version>=199) {
c64.res|=((unsigned char)reader.readC())<<4;
}
READ_FEAT_END;
}
void DivInstrument::readFeatureGB(SafeReader& reader, short version) {
READ_FEAT_BEGIN;
unsigned char next=reader.readC();
gb.envLen=(next>>5)&7;
gb.envDir=(next&16)?1:0;
gb.envVol=next&15;
gb.soundLen=reader.readC();
next=reader.readC();
if (version>=196) gb.doubleWave=next&4;
gb.alwaysInit=next&2;
gb.softEnv=next&1;
gb.hwSeqLen=reader.readC();
for (int i=0; i<gb.hwSeqLen; i++) {
gb.hwSeq[i].cmd=reader.readC();
gb.hwSeq[i].data=reader.readS();
}
READ_FEAT_END;
}
void DivInstrument::readFeatureSM(SafeReader& reader, short version) {
READ_FEAT_BEGIN;
amiga.initSample=reader.readS();
unsigned char next=reader.readC();
amiga.useWave=next&4;
amiga.useSample=next&2;
amiga.useNoteMap=next&1;
amiga.waveLen=(unsigned char)reader.readC();
if (amiga.useNoteMap) {
for (int note=0; note<120; note++) {
amiga.noteMap[note].freq=reader.readS();
amiga.noteMap[note].map=reader.readS();
}
if (version<152) {
for (int note=0; note<120; note++) {
amiga.noteMap[note].freq=note;
}
}
}
READ_FEAT_END;
}
void DivInstrument::readFeatureOx(SafeReader& reader, int op, short version) {
READ_FEAT_BEGIN;
unsigned short macroHeaderLen=reader.readS();
if (macroHeaderLen==0) {
logW("invalid macro header length!");
READ_FEAT_END;
return;
}
DivInstrumentMacro* target=&std.opMacros[op].amMacro;
while (reader.tell()<endOfFeat) {
size_t endOfMacroHeader=reader.tell()+macroHeaderLen;
unsigned char macroCode=reader.readC();
// end of macro list
if (macroCode==255) break;
switch (macroCode) {
case 0:
target=&std.opMacros[op].amMacro;
break;
case 1:
target=&std.opMacros[op].arMacro;
break;
case 2:
target=&std.opMacros[op].drMacro;
break;
case 3:
target=&std.opMacros[op].multMacro;
break;
case 4:
target=&std.opMacros[op].rrMacro;
break;
case 5:
target=&std.opMacros[op].slMacro;
break;
case 6:
target=&std.opMacros[op].tlMacro;
break;
case 7:
target=&std.opMacros[op].dt2Macro;
break;
case 8:
target=&std.opMacros[op].rsMacro;
break;
case 9:
target=&std.opMacros[op].dtMacro;
break;
case 10:
target=&std.opMacros[op].d2rMacro;
break;
case 11:
target=&std.opMacros[op].ssgMacro;
break;
case 12:
target=&std.opMacros[op].damMacro;
break;
case 13:
target=&std.opMacros[op].dvbMacro;
break;
case 14:
target=&std.opMacros[op].egtMacro;
break;
case 15:
target=&std.opMacros[op].kslMacro;
break;
case 16:
target=&std.opMacros[op].susMacro;
break;
case 17:
target=&std.opMacros[op].vibMacro;
break;
case 18:
target=&std.opMacros[op].wsMacro;
break;
case 19:
target=&std.opMacros[op].ksrMacro;
break;
}
target->len=reader.readC();
target->loop=reader.readC();
target->rel=reader.readC();
target->mode=reader.readC();
unsigned char wordSize=reader.readC();
target->open=wordSize&7;
wordSize>>=6;
target->delay=reader.readC();
target->speed=reader.readC();
reader.seek(endOfMacroHeader,SEEK_SET);
// read macro
switch (wordSize) {
case 0:
for (int i=0; i<target->len; i++) {
target->val[i]=(unsigned char)reader.readC();
}
break;
case 1:
for (int i=0; i<target->len; i++) {
target->val[i]=(signed char)reader.readC();
}
break;
case 2:
for (int i=0; i<target->len; i++) {
target->val[i]=reader.readS();
}
break;
default:
for (int i=0; i<target->len; i++) {
target->val[i]=reader.readI();
}
break;
}
// <167 TL macro compat
if (macroCode==6 && version<167) {
if (target->open&6) {
for (int j=0; j<2; j++) {
target->val[j]^=0x7f;
}
} else {
for (int j=0; j<target->len; j++) {
target->val[j]^=0x7f;
}
}
}
}
READ_FEAT_END;
}
void DivInstrument::readFeatureLD(SafeReader& reader, short version) {
READ_FEAT_BEGIN;
fm.fixedDrums=reader.readC();
fm.kickFreq=reader.readS();
fm.snareHatFreq=reader.readS();
fm.tomTopFreq=reader.readS();
READ_FEAT_END;
}
void DivInstrument::readFeatureSN(SafeReader& reader, short version) {
READ_FEAT_BEGIN;
unsigned char next=reader.readC();
snes.d=(next>>4)&7;
snes.a=next&15;
next=reader.readC();
snes.s=(next>>5)&7;
snes.r=next&31;
next=reader.readC();
snes.useEnv=next&16;
snes.sus=(next&8)?1:0;
snes.gainMode=(DivInstrumentSNES::GainMode)(next&7);
if (snes.gainMode==1 || snes.gainMode==2 || snes.gainMode==3) snes.gainMode=DivInstrumentSNES::GAIN_MODE_DIRECT;
snes.gain=reader.readC();
if (version>=131) {
next=reader.readC();
snes.sus=(next>>5)&3;
snes.d2=next&31;
}
READ_FEAT_END;
}
void DivInstrument::readFeatureN1(SafeReader& reader, short version) {
READ_FEAT_BEGIN;
n163.wave=reader.readI();
n163.wavePos=(unsigned char)reader.readC();
n163.waveLen=(unsigned char)reader.readC();
n163.waveMode=(unsigned char)reader.readC();
if (version>=164) {
n163.perChanPos=reader.readC();
if (n163.perChanPos) {
for (int i=0; i<8; i++) {
n163.wavePosCh[i]=(unsigned char)reader.readC();
}
for (int i=0; i<8; i++) {
n163.waveLenCh[i]=(unsigned char)reader.readC();
}
}
}
READ_FEAT_END;
}
void DivInstrument::readFeatureFD(SafeReader& reader, short version) {
READ_FEAT_BEGIN;
fds.modSpeed=reader.readI();
fds.modDepth=reader.readI();
fds.initModTableWithFirstWave=reader.readC();
reader.read(fds.modTable,32);
READ_FEAT_END;
}
void DivInstrument::readFeatureWS(SafeReader& reader, short version) {
READ_FEAT_BEGIN;
ws.wave1=reader.readI();
ws.wave2=reader.readI();
ws.rateDivider=reader.readC();
ws.effect=reader.readC();
ws.enabled=reader.readC();
ws.global=reader.readC();
ws.speed=reader.readC();
ws.param1=reader.readC();
ws.param2=reader.readC();
ws.param3=reader.readC();
ws.param4=reader.readC();
READ_FEAT_END;
}
void DivInstrument::readFeatureSL(SafeReader& reader, DivSong* song, short version) {
READ_FEAT_BEGIN;
unsigned int samplePtr[256];
unsigned char sampleIndex[256];
unsigned char sampleRemap[256];
memset(samplePtr,0,256*sizeof(unsigned int));
memset(sampleIndex,0,256);
memset(sampleRemap,0,256);
unsigned char sampleCount=reader.readC();
for (int i=0; i<sampleCount; i++) {
sampleIndex[i]=reader.readC();
}
for (int i=0; i<sampleCount; i++) {
samplePtr[i]=reader.readI();
}
size_t lastSeek=reader.tell();
// load samples
for (int i=0; i<sampleCount; i++) {
reader.seek(samplePtr[i],SEEK_SET);
if (song->sample.size()>=256) {
break;
}
DivSample* sample=new DivSample;
int sampleCount=(int)song->sample.size();
DivDataErrors result=sample->readSampleData(reader,version);
if (result==DIV_DATA_SUCCESS) {
song->sample.push_back(sample);
song->sampleLen=sampleCount+1;
sampleRemap[sampleIndex[i]]=sampleCount;
} else {
delete sample;
sampleRemap[sampleIndex[i]]=0;
}
}
reader.seek(lastSeek,SEEK_SET);
// re-map samples
if (amiga.initSample>=0 && amiga.initSample<256) {
amiga.initSample=sampleRemap[amiga.initSample];
}
if (amiga.useNoteMap) {
for (int i=0; i<120; i++) {
if (amiga.noteMap[i].map>=0 && amiga.noteMap[i].map<256) {
amiga.noteMap[i].map=sampleRemap[amiga.noteMap[i].map];
}
}
}
READ_FEAT_END;
}
void DivInstrument::readFeatureWL(SafeReader& reader, DivSong* song, short version) {
READ_FEAT_BEGIN;
unsigned int wavePtr[256];
unsigned char waveIndex[256];
unsigned char waveRemap[256];
memset(wavePtr,0,256*sizeof(unsigned int));
memset(waveIndex,0,256);
memset(waveRemap,0,256);
unsigned char waveCount=reader.readC();
for (int i=0; i<waveCount; i++) {
waveIndex[i]=reader.readC();
}
for (int i=0; i<waveCount; i++) {
wavePtr[i]=reader.readI();
}
size_t lastSeek=reader.tell();
// load wavetables
for (int i=0; i<waveCount; i++) {
reader.seek(wavePtr[i],SEEK_SET);
if (song->wave.size()>=256) {
break;
}
DivWavetable* wave=new DivWavetable;
int waveCount=(int)song->wave.size();
DivDataErrors result=wave->readWaveData(reader,version);
if (result==DIV_DATA_SUCCESS) {
song->wave.push_back(wave);
song->waveLen=waveCount+1;
waveRemap[waveIndex[i]]=waveCount;
} else {
delete wave;
waveRemap[waveIndex[i]]=0;
}
}
reader.seek(lastSeek,SEEK_SET);
// re-map wavetables
if (ws.enabled) {
if (ws.wave1>=0 && ws.wave1<256) ws.wave1=waveRemap[ws.wave1];
if (ws.effect&0x80) {
if (ws.wave2>=0 && ws.wave2<256) ws.wave2=waveRemap[ws.wave2];
}
}
if (n163.wave>=0 && n163.wave<256) n163.wave=waveRemap[n163.wave];
for (int i=0; i<std.waveMacro.len; i++) {
if (std.waveMacro.val[i]>=0 && std.waveMacro.val[i]<256) std.waveMacro.val[i]=waveRemap[std.waveMacro.val[i]];
}
READ_FEAT_END;
}
void DivInstrument::readFeatureMP(SafeReader& reader, short version) {
READ_FEAT_BEGIN;
multipcm.ar=reader.readC();
multipcm.d1r=reader.readC();
multipcm.dl=reader.readC();
multipcm.d2r=reader.readC();
multipcm.rr=reader.readC();
multipcm.rc=reader.readC();
multipcm.lfo=reader.readC();
multipcm.vib=reader.readC();
multipcm.am=reader.readC();
READ_FEAT_END;
}
void DivInstrument::readFeatureSU(SafeReader& reader, short version) {
READ_FEAT_BEGIN;
su.switchRoles=reader.readC();
if (version>=185) {
su.hwSeqLen=reader.readC();
for (int i=0; i<su.hwSeqLen; i++) {
su.hwSeq[i].cmd=reader.readC();
su.hwSeq[i].bound=reader.readC();
su.hwSeq[i].val=reader.readC();
su.hwSeq[i].speed=reader.readS();
}
}
READ_FEAT_END;
}
void DivInstrument::readFeatureES(SafeReader& reader, short version) {
READ_FEAT_BEGIN;
es5506.filter.mode=(DivInstrumentES5506::Filter::FilterMode)reader.readC();
es5506.filter.k1=reader.readS();
es5506.filter.k2=reader.readS();
es5506.envelope.ecount=reader.readS();
es5506.envelope.lVRamp=reader.readC();
es5506.envelope.rVRamp=reader.readC();
es5506.envelope.k1Ramp=reader.readC();
es5506.envelope.k2Ramp=reader.readC();
es5506.envelope.k1Slow=reader.readC();
es5506.envelope.k2Slow=reader.readC();
READ_FEAT_END;
}
void DivInstrument::readFeatureX1(SafeReader& reader, short version) {
READ_FEAT_BEGIN;
x1_010.bankSlot=reader.readI();
READ_FEAT_END;
}
void DivInstrument::readFeatureNE(SafeReader& reader, short version) {
READ_FEAT_BEGIN;
amiga.useNoteMap=reader.readC();
if (amiga.useNoteMap) {
for (int note=0; note<120; note++) {
amiga.noteMap[note].dpcmFreq=reader.readC();
amiga.noteMap[note].dpcmDelta=reader.readC();
}
}
READ_FEAT_END;
}
void DivInstrument::readFeatureEF(SafeReader& reader, short version) {
READ_FEAT_BEGIN;
unsigned char next=reader.readC();
esfm.noise=next&3;
for (int i=0; i<4; i++) {
DivInstrumentESFM::Operator& op=esfm.op[i];
next=reader.readC();
op.delay=(next>>5)&7;
op.outLvl=(next>>2)&7;
op.right=(next>>1)&1;
op.left=next&1;
next=reader.readC();
op.modIn=next&7;
op.fixed=(next>>3)&1;
op.ct=reader.readC();
op.dt=reader.readC();
}
READ_FEAT_END;
}
void DivInstrument::readFeaturePN(SafeReader& reader, short version) {
READ_FEAT_BEGIN;
powernoise.octave=reader.readC();
READ_FEAT_END;
}
void DivInstrument::readFeatureS2(SafeReader& reader, short version) {
READ_FEAT_BEGIN;
unsigned char next=reader.readC();
sid2.volume=next&0xf;
sid2.mixMode=(next>>4)&3;
sid2.noiseMode=next>>6;
READ_FEAT_END;
}
DivDataErrors DivInstrument::readInsDataNew(SafeReader& reader, short version, bool fui, DivSong* song) {
unsigned char featCode[2];
bool volIsCutoff=false;
int dataLen=reader.size()-4;
if (!fui) {
dataLen=reader.readI();
}
dataLen+=reader.tell();
logV("data length: %d",dataLen);
reader.readS(); // format version. ignored.
type=(DivInstrumentType)reader.readS();
// feature reading loop
while ((int)reader.tell()<dataLen) {
// read feature code
reader.read(featCode,2);
logV("- %c%c",featCode[0],featCode[1]);
if (memcmp(featCode,"EN",2)==0) { // end of instrument
break;
} else if (memcmp(featCode,"NA",2)==0) { // name
readFeatureNA(reader,version);
} else if (memcmp(featCode,"FM",2)==0) { // FM
readFeatureFM(reader,version);
} else if (memcmp(featCode,"MA",2)==0) { // macros
readFeatureMA(reader,version);
} else if (memcmp(featCode,"64",2)==0) { // C64
readFeature64(reader,volIsCutoff,version);
} else if (memcmp(featCode,"GB",2)==0) { // Game Boy
readFeatureGB(reader,version);
} else if (memcmp(featCode,"SM",2)==0) { // sample
readFeatureSM(reader,version);
} else if (memcmp(featCode,"O1",2)==0) { // op1 macros
readFeatureOx(reader,0,version);
} else if (memcmp(featCode,"O2",2)==0) { // op2 macros
readFeatureOx(reader,1,version);
} else if (memcmp(featCode,"O3",2)==0) { // op3 macros
readFeatureOx(reader,2,version);
} else if (memcmp(featCode,"O4",2)==0) { // op4 macros
readFeatureOx(reader,3,version);
} else if (memcmp(featCode,"LD",2)==0) { // OPL drums
readFeatureLD(reader,version);
} else if (memcmp(featCode,"SN",2)==0) { // SNES
readFeatureSN(reader,version);
} else if (memcmp(featCode,"N1",2)==0) { // Namco 163
readFeatureN1(reader,version);
} else if (memcmp(featCode,"FD",2)==0) { // FDS/VB
readFeatureFD(reader,version);
} else if (memcmp(featCode,"WS",2)==0) { // WaveSynth
readFeatureWS(reader,version);
} else if (memcmp(featCode,"SL",2)==0 && fui && song!=NULL) { // sample list
readFeatureSL(reader,song,version);
} else if (memcmp(featCode,"WL",2)==0 && fui && song!=NULL) { // wave list
readFeatureWL(reader,song,version);
} else if (memcmp(featCode,"MP",2)==0) { // MultiPCM
readFeatureMP(reader,version);
} else if (memcmp(featCode,"SU",2)==0) { // Sound Unit
readFeatureSU(reader,version);
} else if (memcmp(featCode,"ES",2)==0) { // ES5506
readFeatureES(reader,version);
} else if (memcmp(featCode,"X1",2)==0) { // X1-010
readFeatureX1(reader,version);
} else if (memcmp(featCode,"NE",2)==0) { // NES (DPCM)
readFeatureNE(reader,version);
} else if (memcmp(featCode,"EF",2)==0) { // ESFM
readFeatureEF(reader,version);
} else if (memcmp(featCode,"PN",2)==0) { // PowerNoise
readFeaturePN(reader,version);
} else if (memcmp(featCode,"S2",2)==0) { // SID2
readFeatureS2(reader,version);
} else {
if (song==NULL && (memcmp(featCode,"SL",2)==0 || (memcmp(featCode,"WL",2)==0))) {
// nothing
} else {
logW("unknown feature code %c%c!",featCode[0],featCode[1]);
}
// skip feature
unsigned short skip=reader.readS();
reader.seek(skip,SEEK_CUR);
}
}
// <187 C64 cutoff macro compatibility
if (type==DIV_INS_C64 && volIsCutoff && version<187) {
memcpy(&std.algMacro,&std.volMacro,sizeof(DivInstrumentMacro));
std.algMacro.macroType=DIV_MACRO_ALG;
std.volMacro=DivInstrumentMacro(DIV_MACRO_VOL,true);
if (!c64.filterIsAbs) {
for (int i=0; i<std.algMacro.len; i++) {
std.algMacro.val[i]=-std.algMacro.val[i];
}
}
}
// <187 special/test/gate merge
if (type==DIV_INS_C64 && version<187) {
convertC64SpecialMacro();
}
return DIV_DATA_SUCCESS;
}
#define READ_MACRO_VALS(x,y) \
for (int macroValPos=0; macroValPos<y; macroValPos++) x[macroValPos]=reader.readI();
DivDataErrors DivInstrument::readInsDataOld(SafeReader &reader, short version) {
bool volIsCutoff=false;
reader.readI(); // length. ignored.
reader.readS(); // format version. ignored.
type=(DivInstrumentType)reader.readC();
reader.readC();
name=reader.readString();
// FM
fm.alg=reader.readC();
fm.fb=reader.readC();
fm.fms=reader.readC();
fm.ams=reader.readC();
fm.ops=reader.readC();
if (version>=60) {
fm.opllPreset=reader.readC();
} else {
reader.readC();
}
reader.readC();
reader.readC();
for (int j=0; j<4; j++) {
DivInstrumentFM::Operator& op=fm.op[j];
op.am=reader.readC();
op.ar=reader.readC();
op.dr=reader.readC();
op.mult=reader.readC();
op.rr=reader.readC();
op.sl=reader.readC();
op.tl=reader.readC();
op.dt2=reader.readC();
op.rs=reader.readC();
op.dt=reader.readC();
op.d2r=reader.readC();
op.ssgEnv=reader.readC();
op.dam=reader.readC();
op.dvb=reader.readC();
op.egt=reader.readC();
op.ksl=reader.readC();
op.sus=reader.readC();
op.vib=reader.readC();
op.ws=reader.readC();
op.ksr=reader.readC();
if (version>=114) {
op.enable=reader.readC();
} else {
reader.readC();
}
if (version>=115) {
op.kvs=reader.readC();
} else {
op.kvs=2;
reader.readC();
}
// reserved
for (int k=0; k<10; k++) reader.readC();
}
// GB
gb.envVol=reader.readC();
gb.envDir=reader.readC();
gb.envLen=reader.readC();
gb.soundLen=reader.readC();
// C64
c64.triOn=reader.readC();
c64.sawOn=reader.readC();
c64.pulseOn=reader.readC();
c64.noiseOn=reader.readC();
c64.a=reader.readC();
c64.d=reader.readC();
c64.s=reader.readC();
c64.r=reader.readC();
c64.duty=reader.readS();
c64.ringMod=reader.readC();
c64.oscSync=reader.readC();
c64.toFilter=reader.readC();
c64.initFilter=reader.readC();
volIsCutoff=reader.readC();
c64.res=reader.readC();
c64.lp=reader.readC();
c64.bp=reader.readC();
c64.hp=reader.readC();
c64.ch3off=reader.readC();
c64.cut=reader.readS();
c64.dutyIsAbs=reader.readC();
c64.filterIsAbs=reader.readC();
// Amiga
amiga.initSample=reader.readS();
if (version>=82) {
amiga.useWave=reader.readC();
amiga.waveLen=(unsigned char)reader.readC();
} else {
reader.readC();
reader.readC();
}
// reserved
for (int k=0; k<12; k++) reader.readC();
// standard
std.volMacro.len=reader.readI();
std.arpMacro.len=reader.readI();
std.dutyMacro.len=reader.readI();
std.waveMacro.len=reader.readI();
if (version>=17) {
std.pitchMacro.len=reader.readI();
std.ex1Macro.len=reader.readI();
std.ex2Macro.len=reader.readI();
std.ex3Macro.len=reader.readI();
}
std.volMacro.loop=reader.readI();
std.arpMacro.loop=reader.readI();
std.dutyMacro.loop=reader.readI();
std.waveMacro.loop=reader.readI();
if (version>=17) {
std.pitchMacro.loop=reader.readI();
std.ex1Macro.loop=reader.readI();
std.ex2Macro.loop=reader.readI();
std.ex3Macro.loop=reader.readI();
}
std.arpMacro.mode=reader.readC();
// these 3 were macro heights before but they are not used anymore
int oldVolHeight=reader.readC();
int oldDutyHeight=reader.readC();
reader.readC(); // oldWaveHeight
READ_MACRO_VALS(std.volMacro.val,std.volMacro.len);
READ_MACRO_VALS(std.arpMacro.val,std.arpMacro.len);
READ_MACRO_VALS(std.dutyMacro.val,std.dutyMacro.len);
READ_MACRO_VALS(std.waveMacro.val,std.waveMacro.len);
if (version<31) {
if (!std.arpMacro.mode) for (int j=0; j<std.arpMacro.len; j++) {
std.arpMacro.val[j]-=12;
}
}
if (type==DIV_INS_C64 && version<87) {
if (volIsCutoff && !c64.filterIsAbs) for (int j=0; j<std.volMacro.len; j++) {
std.volMacro.val[j]-=18;
}
if (!c64.dutyIsAbs) for (int j=0; j<std.dutyMacro.len; j++) {
std.dutyMacro.val[j]-=12;
}
}
if (version<193) {
if (type==DIV_INS_AY || type==DIV_INS_AY8930) {
for (int j=0; j<std.waveMacro.len; j++) {
std.waveMacro.val[j]++;
}
}
}
if (version>=17) {
READ_MACRO_VALS(std.pitchMacro.val,std.pitchMacro.len);
READ_MACRO_VALS(std.ex1Macro.val,std.ex1Macro.len);
READ_MACRO_VALS(std.ex2Macro.val,std.ex2Macro.len);
READ_MACRO_VALS(std.ex3Macro.val,std.ex3Macro.len);
} else {
if (type==DIV_INS_STD) {
if (oldVolHeight==31) {
type=DIV_INS_PCE;
}
if (oldDutyHeight==31) {
type=DIV_INS_AY;
}
}
}
// FM macros
if (version>=29) {
std.algMacro.len=reader.readI();
std.fbMacro.len=reader.readI();
std.fmsMacro.len=reader.readI();
std.amsMacro.len=reader.readI();
std.algMacro.loop=reader.readI();
std.fbMacro.loop=reader.readI();
std.fmsMacro.loop=reader.readI();
std.amsMacro.loop=reader.readI();
std.volMacro.open=reader.readC();
std.arpMacro.open=reader.readC();
std.dutyMacro.open=reader.readC();
std.waveMacro.open=reader.readC();
std.pitchMacro.open=reader.readC();
std.ex1Macro.open=reader.readC();
std.ex2Macro.open=reader.readC();
std.ex3Macro.open=reader.readC();
std.algMacro.open=reader.readC();
std.fbMacro.open=reader.readC();
std.fmsMacro.open=reader.readC();
std.amsMacro.open=reader.readC();
READ_MACRO_VALS(std.algMacro.val,std.algMacro.len);
READ_MACRO_VALS(std.fbMacro.val,std.fbMacro.len);
READ_MACRO_VALS(std.fmsMacro.val,std.fmsMacro.len);
READ_MACRO_VALS(std.amsMacro.val,std.amsMacro.len);
for (int i=0; i<4; i++) {
DivInstrumentSTD::OpMacro& op=std.opMacros[i];
op.amMacro.len=reader.readI();
op.arMacro.len=reader.readI();
op.drMacro.len=reader.readI();
op.multMacro.len=reader.readI();
op.rrMacro.len=reader.readI();
op.slMacro.len=reader.readI();
op.tlMacro.len=reader.readI();
op.dt2Macro.len=reader.readI();
op.rsMacro.len=reader.readI();
op.dtMacro.len=reader.readI();
op.d2rMacro.len=reader.readI();
op.ssgMacro.len=reader.readI();
op.amMacro.loop=reader.readI();
op.arMacro.loop=reader.readI();
op.drMacro.loop=reader.readI();
op.multMacro.loop=reader.readI();
op.rrMacro.loop=reader.readI();
op.slMacro.loop=reader.readI();
op.tlMacro.loop=reader.readI();
op.dt2Macro.loop=reader.readI();
op.rsMacro.loop=reader.readI();
op.dtMacro.loop=reader.readI();
op.d2rMacro.loop=reader.readI();
op.ssgMacro.loop=reader.readI();
op.amMacro.open=reader.readC();
op.arMacro.open=reader.readC();
op.drMacro.open=reader.readC();
op.multMacro.open=reader.readC();
op.rrMacro.open=reader.readC();
op.slMacro.open=reader.readC();
op.tlMacro.open=reader.readC();
op.dt2Macro.open=reader.readC();
op.rsMacro.open=reader.readC();
op.dtMacro.open=reader.readC();
op.d2rMacro.open=reader.readC();
op.ssgMacro.open=reader.readC();
}
// FM macro low 8 bits
for (int i=0; i<4; i++) {
DivInstrumentSTD::OpMacro& op=std.opMacros[i];
for (int j=0; j<op.amMacro.len; j++) {
op.amMacro.val[j]=(unsigned char)reader.readC();
}
for (int j=0; j<op.arMacro.len; j++) {
op.arMacro.val[j]=(unsigned char)reader.readC();
}
for (int j=0; j<op.drMacro.len; j++) {
op.drMacro.val[j]=(unsigned char)reader.readC();
}
for (int j=0; j<op.multMacro.len; j++) {
op.multMacro.val[j]=(unsigned char)reader.readC();
}
for (int j=0; j<op.rrMacro.len; j++) {
op.rrMacro.val[j]=(unsigned char)reader.readC();
}
for (int j=0; j<op.slMacro.len; j++) {
op.slMacro.val[j]=(unsigned char)reader.readC();
}
for (int j=0; j<op.tlMacro.len; j++) {
op.tlMacro.val[j]=(unsigned char)reader.readC();
}
for (int j=0; j<op.dt2Macro.len; j++) {
op.dt2Macro.val[j]=(unsigned char)reader.readC();
}
for (int j=0; j<op.rsMacro.len; j++) {
op.rsMacro.val[j]=(unsigned char)reader.readC();
}
for (int j=0; j<op.dtMacro.len; j++) {
op.dtMacro.val[j]=(unsigned char)reader.readC();
}
for (int j=0; j<op.d2rMacro.len; j++) {
op.d2rMacro.val[j]=(unsigned char)reader.readC();
}
for (int j=0; j<op.ssgMacro.len; j++) {
op.ssgMacro.val[j]=(unsigned char)reader.readC();
}
}
}
// release points
if (version>=44) {
std.volMacro.rel=reader.readI();
std.arpMacro.rel=reader.readI();
std.dutyMacro.rel=reader.readI();
std.waveMacro.rel=reader.readI();
std.pitchMacro.rel=reader.readI();
std.ex1Macro.rel=reader.readI();
std.ex2Macro.rel=reader.readI();
std.ex3Macro.rel=reader.readI();
std.algMacro.rel=reader.readI();
std.fbMacro.rel=reader.readI();
std.fmsMacro.rel=reader.readI();
std.amsMacro.rel=reader.readI();
for (int i=0; i<4; i++) {
DivInstrumentSTD::OpMacro& op=std.opMacros[i];
op.amMacro.rel=reader.readI();
op.arMacro.rel=reader.readI();
op.drMacro.rel=reader.readI();
op.multMacro.rel=reader.readI();
op.rrMacro.rel=reader.readI();
op.slMacro.rel=reader.readI();
op.tlMacro.rel=reader.readI();
op.dt2Macro.rel=reader.readI();
op.rsMacro.rel=reader.readI();
op.dtMacro.rel=reader.readI();
op.d2rMacro.rel=reader.readI();
op.ssgMacro.rel=reader.readI();
}
}
// extended op macros
if (version>=61) {
for (int i=0; i<4; i++) {
DivInstrumentSTD::OpMacro& op=std.opMacros[i];
op.damMacro.len=reader.readI();
op.dvbMacro.len=reader.readI();
op.egtMacro.len=reader.readI();
op.kslMacro.len=reader.readI();
op.susMacro.len=reader.readI();
op.vibMacro.len=reader.readI();
op.wsMacro.len=reader.readI();
op.ksrMacro.len=reader.readI();
op.damMacro.loop=reader.readI();
op.dvbMacro.loop=reader.readI();
op.egtMacro.loop=reader.readI();
op.kslMacro.loop=reader.readI();
op.susMacro.loop=reader.readI();
op.vibMacro.loop=reader.readI();
op.wsMacro.loop=reader.readI();
op.ksrMacro.loop=reader.readI();
op.damMacro.rel=reader.readI();
op.dvbMacro.rel=reader.readI();
op.egtMacro.rel=reader.readI();
op.kslMacro.rel=reader.readI();
op.susMacro.rel=reader.readI();
op.vibMacro.rel=reader.readI();
op.wsMacro.rel=reader.readI();
op.ksrMacro.rel=reader.readI();
op.damMacro.open=reader.readC();
op.dvbMacro.open=reader.readC();
op.egtMacro.open=reader.readC();
op.kslMacro.open=reader.readC();
op.susMacro.open=reader.readC();
op.vibMacro.open=reader.readC();
op.wsMacro.open=reader.readC();
op.ksrMacro.open=reader.readC();
}
for (int i=0; i<4; i++) {
DivInstrumentSTD::OpMacro& op=std.opMacros[i];
for (int j=0; j<op.damMacro.len; j++) {
op.damMacro.val[j]=(unsigned char)reader.readC();
}
for (int j=0; j<op.dvbMacro.len; j++) {
op.dvbMacro.val[j]=(unsigned char)reader.readC();
}
for (int j=0; j<op.egtMacro.len; j++) {
op.egtMacro.val[j]=(unsigned char)reader.readC();
}
for (int j=0; j<op.kslMacro.len; j++) {
op.kslMacro.val[j]=(unsigned char)reader.readC();
}
for (int j=0; j<op.susMacro.len; j++) {
op.susMacro.val[j]=(unsigned char)reader.readC();
}
for (int j=0; j<op.vibMacro.len; j++) {
op.vibMacro.val[j]=(unsigned char)reader.readC();
}
for (int j=0; j<op.wsMacro.len; j++) {
op.wsMacro.val[j]=(unsigned char)reader.readC();
}
for (int j=0; j<op.ksrMacro.len; j++) {
op.ksrMacro.val[j]=(unsigned char)reader.readC();
}
}
}
// OPL drum data
if (version>=63) {
fm.fixedDrums=reader.readC();
reader.readC(); // reserved
fm.kickFreq=reader.readS();
fm.snareHatFreq=reader.readS();
fm.tomTopFreq=reader.readS();
}
// clear noise macro if PCE instrument and version<63
if (version<63 && type==DIV_INS_PCE) {
std.dutyMacro.len=0;
std.dutyMacro.loop=255;
std.dutyMacro.rel=255;
}
// clear wave macro if OPLL instrument and version<70
if (version<70 && type==DIV_INS_OPLL) {
std.waveMacro.len=0;
std.waveMacro.loop=255;
std.waveMacro.rel=255;
}
// sample map
if (version>=67) {
amiga.useNoteMap=reader.readC();
if (amiga.useNoteMap) {
for (int note=0; note<120; note++) {
amiga.noteMap[note].freq=reader.readI();
}
for (int note=0; note<120; note++) {
amiga.noteMap[note].map=reader.readS();
}
if (version<152) {
for (int note=0; note<120; note++) {
amiga.noteMap[note].freq=note;
}
}
}
}
// N163
if (version>=73) {
n163.wave=reader.readI();
n163.wavePos=(unsigned char)reader.readC();
n163.waveLen=(unsigned char)reader.readC();
n163.waveMode=(unsigned char)reader.readC();
reader.readC(); // reserved
}
if (version>=76) {
// more macros
std.panLMacro.len=reader.readI();
std.panRMacro.len=reader.readI();
std.phaseResetMacro.len=reader.readI();
std.ex4Macro.len=reader.readI();
std.ex5Macro.len=reader.readI();
std.ex6Macro.len=reader.readI();
std.ex7Macro.len=reader.readI();
std.ex8Macro.len=reader.readI();
std.panLMacro.loop=reader.readI();
std.panRMacro.loop=reader.readI();
std.phaseResetMacro.loop=reader.readI();
std.ex4Macro.loop=reader.readI();
std.ex5Macro.loop=reader.readI();
std.ex6Macro.loop=reader.readI();
std.ex7Macro.loop=reader.readI();
std.ex8Macro.loop=reader.readI();
std.panLMacro.rel=reader.readI();
std.panRMacro.rel=reader.readI();
std.phaseResetMacro.rel=reader.readI();
std.ex4Macro.rel=reader.readI();
std.ex5Macro.rel=reader.readI();
std.ex6Macro.rel=reader.readI();
std.ex7Macro.rel=reader.readI();
std.ex8Macro.rel=reader.readI();
std.panLMacro.open=reader.readC();
std.panRMacro.open=reader.readC();
std.phaseResetMacro.open=reader.readC();
std.ex4Macro.open=reader.readC();
std.ex5Macro.open=reader.readC();
std.ex6Macro.open=reader.readC();
std.ex7Macro.open=reader.readC();
std.ex8Macro.open=reader.readC();
READ_MACRO_VALS(std.panLMacro.val,std.panLMacro.len);
READ_MACRO_VALS(std.panRMacro.val,std.panRMacro.len);
READ_MACRO_VALS(std.phaseResetMacro.val,std.phaseResetMacro.len);
READ_MACRO_VALS(std.ex4Macro.val,std.ex4Macro.len);
READ_MACRO_VALS(std.ex5Macro.val,std.ex5Macro.len);
READ_MACRO_VALS(std.ex6Macro.val,std.ex6Macro.len);
READ_MACRO_VALS(std.ex7Macro.val,std.ex7Macro.len);
READ_MACRO_VALS(std.ex8Macro.val,std.ex8Macro.len);
// FDS
fds.modSpeed=reader.readI();
fds.modDepth=reader.readI();
fds.initModTableWithFirstWave=reader.readC();
reader.readC(); // reserved
reader.readC();
reader.readC();
reader.read(fds.modTable,32);
}
// OPZ
if (version>=77) {
fm.fms2=reader.readC();
fm.ams2=reader.readC();
}
// wave synth
if (version>=79) {
ws.wave1=reader.readI();
ws.wave2=reader.readI();
ws.rateDivider=reader.readC();
ws.effect=reader.readC();
ws.enabled=reader.readC();
ws.global=reader.readC();
ws.speed=reader.readC();
ws.param1=reader.readC();
ws.param2=reader.readC();
ws.param3=reader.readC();
ws.param4=reader.readC();
}
// other macro modes
if (version>=84) {
std.volMacro.mode=reader.readC();
std.dutyMacro.mode=reader.readC();
std.waveMacro.mode=reader.readC();
std.pitchMacro.mode=reader.readC();
std.ex1Macro.mode=reader.readC();
std.ex2Macro.mode=reader.readC();
std.ex3Macro.mode=reader.readC();
std.algMacro.mode=reader.readC();
std.fbMacro.mode=reader.readC();
std.fmsMacro.mode=reader.readC();
std.amsMacro.mode=reader.readC();
std.panLMacro.mode=reader.readC();
std.panRMacro.mode=reader.readC();
std.phaseResetMacro.mode=reader.readC();
std.ex4Macro.mode=reader.readC();
std.ex5Macro.mode=reader.readC();
std.ex6Macro.mode=reader.readC();
std.ex7Macro.mode=reader.readC();
std.ex8Macro.mode=reader.readC();
}
// C64 no test
if (version>=89) {
c64.noTest=reader.readC();
}
// MultiPCM
if (version>=93) {
multipcm.ar=reader.readC();
multipcm.d1r=reader.readC();
multipcm.dl=reader.readC();
multipcm.d2r=reader.readC();
multipcm.rr=reader.readC();
multipcm.rc=reader.readC();
multipcm.lfo=reader.readC();
multipcm.vib=reader.readC();
multipcm.am=reader.readC();
// reserved
for (int k=0; k<23; k++) reader.readC();
}
// Sound Unit
if (version>=104) {
amiga.useSample=reader.readC();
su.switchRoles=reader.readC();
}
// GB hardware sequence
if (version>=105) {
gb.hwSeqLen=reader.readC();
for (int i=0; i<gb.hwSeqLen; i++) {
gb.hwSeq[i].cmd=reader.readC();
gb.hwSeq[i].data=reader.readS();
}
}
// GB additional flags
if (version>=106) {
gb.softEnv=reader.readC();
gb.alwaysInit=reader.readC();
}
// ES5506
if (version>=107) {
es5506.filter.mode=(DivInstrumentES5506::Filter::FilterMode)reader.readC();
es5506.filter.k1=reader.readS();
es5506.filter.k2=reader.readS();
es5506.envelope.ecount=reader.readS();
es5506.envelope.lVRamp=reader.readC();
es5506.envelope.rVRamp=reader.readC();
es5506.envelope.k1Ramp=reader.readC();
es5506.envelope.k2Ramp=reader.readC();
es5506.envelope.k1Slow=reader.readC();
es5506.envelope.k2Slow=reader.readC();
}
// SNES
if (version>=109) {
snes.useEnv=reader.readC();
if (version<118) {
// why why why
reader.readC();
reader.readC();
} else {
snes.gainMode=(DivInstrumentSNES::GainMode)reader.readC();
snes.gain=reader.readC();
}
snes.a=reader.readC();
snes.d=reader.readC();
snes.s=reader.readC();
snes.sus=(snes.s&8)?1:0;
snes.s&=7;
snes.r=reader.readC();
}
// macro speed/delay
if (version>=111) {
std.volMacro.speed=reader.readC();
std.arpMacro.speed=reader.readC();
std.dutyMacro.speed=reader.readC();
std.waveMacro.speed=reader.readC();
std.pitchMacro.speed=reader.readC();
std.ex1Macro.speed=reader.readC();
std.ex2Macro.speed=reader.readC();
std.ex3Macro.speed=reader.readC();
std.algMacro.speed=reader.readC();
std.fbMacro.speed=reader.readC();
std.fmsMacro.speed=reader.readC();
std.amsMacro.speed=reader.readC();
std.panLMacro.speed=reader.readC();
std.panRMacro.speed=reader.readC();
std.phaseResetMacro.speed=reader.readC();
std.ex4Macro.speed=reader.readC();
std.ex5Macro.speed=reader.readC();
std.ex6Macro.speed=reader.readC();
std.ex7Macro.speed=reader.readC();
std.ex8Macro.speed=reader.readC();
std.volMacro.delay=reader.readC();
std.arpMacro.delay=reader.readC();
std.dutyMacro.delay=reader.readC();
std.waveMacro.delay=reader.readC();
std.pitchMacro.delay=reader.readC();
std.ex1Macro.delay=reader.readC();
std.ex2Macro.delay=reader.readC();
std.ex3Macro.delay=reader.readC();
std.algMacro.delay=reader.readC();
std.fbMacro.delay=reader.readC();
std.fmsMacro.delay=reader.readC();
std.amsMacro.delay=reader.readC();
std.panLMacro.delay=reader.readC();
std.panRMacro.delay=reader.readC();
std.phaseResetMacro.delay=reader.readC();
std.ex4Macro.delay=reader.readC();
std.ex5Macro.delay=reader.readC();
std.ex6Macro.delay=reader.readC();
std.ex7Macro.delay=reader.readC();
std.ex8Macro.delay=reader.readC();
// op macro speed/delay
for (int i=0; i<4; i++) {
DivInstrumentSTD::OpMacro& op=std.opMacros[i];
op.amMacro.speed=reader.readC();
op.arMacro.speed=reader.readC();
op.drMacro.speed=reader.readC();
op.multMacro.speed=reader.readC();
op.rrMacro.speed=reader.readC();
op.slMacro.speed=reader.readC();
op.tlMacro.speed=reader.readC();
op.dt2Macro.speed=reader.readC();
op.rsMacro.speed=reader.readC();
op.dtMacro.speed=reader.readC();
op.d2rMacro.speed=reader.readC();
op.ssgMacro.speed=reader.readC();
op.damMacro.speed=reader.readC();
op.dvbMacro.speed=reader.readC();
op.egtMacro.speed=reader.readC();
op.kslMacro.speed=reader.readC();
op.susMacro.speed=reader.readC();
op.vibMacro.speed=reader.readC();
op.wsMacro.speed=reader.readC();
op.ksrMacro.speed=reader.readC();
op.amMacro.delay=reader.readC();
op.arMacro.delay=reader.readC();
op.drMacro.delay=reader.readC();
op.multMacro.delay=reader.readC();
op.rrMacro.delay=reader.readC();
op.slMacro.delay=reader.readC();
op.tlMacro.delay=reader.readC();
op.dt2Macro.delay=reader.readC();
op.rsMacro.delay=reader.readC();
op.dtMacro.delay=reader.readC();
op.d2rMacro.delay=reader.readC();
op.ssgMacro.delay=reader.readC();
op.damMacro.delay=reader.readC();
op.dvbMacro.delay=reader.readC();
op.egtMacro.delay=reader.readC();
op.kslMacro.delay=reader.readC();
op.susMacro.delay=reader.readC();
op.vibMacro.delay=reader.readC();
op.wsMacro.delay=reader.readC();
op.ksrMacro.delay=reader.readC();
}
}
// old arp macro format
if (version<112) {
if (std.arpMacro.mode) {
std.arpMacro.mode=0;
for (int i=0; i<std.arpMacro.len; i++) {
std.arpMacro.val[i]^=0x40000000;
}
if ((std.arpMacro.loop>=std.arpMacro.len || (std.arpMacro.rel>std.arpMacro.loop && std.arpMacro.rel<std.arpMacro.len)) && std.arpMacro.len<255) {
std.arpMacro.val[std.arpMacro.len++]=0;
}
}
}
// <167 TL macro compat
if (version<167) {
for (int i=0; i<4; i++) {
if (std.opMacros[i].tlMacro.open&6) {
for (int j=0; j<2; j++) {
std.opMacros[i].tlMacro.val[j]^=0x7f;
}
} else {
for (int j=0; j<std.opMacros[i].tlMacro.len; j++) {
std.opMacros[i].tlMacro.val[j]^=0x7f;
}
}
}
}
// <187 C64 cutoff macro compatibility
if (type==DIV_INS_C64 && volIsCutoff && version<187) {
memcpy(&std.algMacro,&std.volMacro,sizeof(DivInstrumentMacro));
std.algMacro.macroType=DIV_MACRO_ALG;
std.volMacro=DivInstrumentMacro(DIV_MACRO_VOL,true);
if (!c64.filterIsAbs) {
for (int i=0; i<std.algMacro.len; i++) {
std.algMacro.val[i]=-std.algMacro.val[i];
}
}
}
// <187 special/test/gate merge
if (type==DIV_INS_C64 && version<187) {
convertC64SpecialMacro();
}
return DIV_DATA_SUCCESS;
}
DivDataErrors DivInstrument::readInsData(SafeReader& reader, short version, DivSong* song) {
// 0: old (INST)
// 1: new (INS2, length)
// 2: new (FINS, no length)
int type=-1;
char magic[4];
reader.read(magic,4);
if (memcmp(magic,"INST",4)==0) {
type=0;
} else if (memcmp(magic,"INS2",4)==0) {
type=1;
} else if (memcmp(magic,"IN2B",4)==0) { // DIV_FUR_VARIANT_B
type=1;
} else if (memcmp(magic,"FINS",4)==0) {
type=2;
} else if (memcmp(magic,"FINB",4)==0) { // DIV_FUR_VARIANT_B
type=2;
} else {
logE("invalid instrument header!");
return DIV_DATA_INVALID_HEADER;
}
if (type==1 || type==2) {
logV("reading new instrument data...");
return readInsDataNew(reader,version,type==2,song);
}
return readInsDataOld(reader,version);
}
void DivInstrument::convertC64SpecialMacro() {
// merge special and test/gate macros into new special macro
int maxLen=MAX(std.ex3Macro.len,std.ex4Macro.len);
// skip if ex4 is not a sequence macro
if (std.ex4Macro.open&6) return;
// move ex4 macro up and fill in gate
for (int i=0; i<std.ex4Macro.len; i++) {
std.ex4Macro.val[i]=(std.ex4Macro.val[i]&1)?9:1;
}
// merge ex3 into ex4 if viable to
if (std.ex3Macro.len>0 && !(std.ex3Macro.open&6)) {
if (std.ex4Macro.len>0 && std.ex4Macro.len<maxLen) {
for (int i=std.ex4Macro.len; i<maxLen; i++) {
std.ex4Macro.val[i]=std.ex3Macro.val[std.ex4Macro.len-1];
}
} else {
for (int i=0; i<maxLen; i++) {
std.ex4Macro.val[i]=1;
}
}
for (int i=0; i<maxLen; i++) {
if (i>=std.ex3Macro.len) {
std.ex4Macro.val[i]|=(std.ex3Macro.val[std.ex3Macro.len-1]&3)<<1;
} else {
std.ex4Macro.val[i]|=(std.ex3Macro.val[i]&3)<<1;
}
}
}
std.ex4Macro.len=maxLen;
std.ex3Macro=DivInstrumentMacro(DIV_MACRO_EX3);
}
bool DivInstrument::save(const char* path, DivSong* song, bool writeInsName) {
SafeWriter* w=new SafeWriter();
w->init();
putInsData2(w,true,song,writeInsName);
FILE* outFile=ps_fopen(path,"wb");
if (outFile==NULL) {
logE("could not save instrument: %s!",strerror(errno));
w->finish();
return false;
}
if (fwrite(w->getFinalBuf(),1,w->size(),outFile)!=w->size()) {
logW("did not write entire instrument!");
}
fclose(outFile);
w->finish();
return true;
}
bool DivInstrument::saveDMP(const char* path) {
SafeWriter* w=new SafeWriter();
w->init();
// write version
w->writeC(11);
// guess the system
switch (type) {
case DIV_INS_FM:
// we can't tell Genesis and Neo Geo apart
w->writeC(0x02);
w->writeC(1);
break;
case DIV_INS_STD:
w->writeC(0x03);
w->writeC(0);
break;
case DIV_INS_NES:
w->writeC(0x06);
w->writeC(0);
break;
case DIV_INS_GB:
w->writeC(0x04);
w->writeC(0);
break;
case DIV_INS_C64:
w->writeC(0x07);
w->writeC(0);
break;
case DIV_INS_PCE:
w->writeC(0x05);
w->writeC(0);
break;
case DIV_INS_OPLL:
// ???
w->writeC(0x13);
w->writeC(1);
break;
case DIV_INS_OPM:
w->writeC(0x08);
w->writeC(1);
break;
case DIV_INS_OPZ:
// data will be lost
w->writeC(0x08);
w->writeC(1);
break;
case DIV_INS_FDS:
// ???
w->writeC(0x06);
w->writeC(0);
break;
default:
// not supported by .dmp
w->finish();
return false;
}
if (type==DIV_INS_FM || type==DIV_INS_OPM || type==DIV_INS_OPLL || type==DIV_INS_OPZ) {
w->writeC(fm.fms);
w->writeC(fm.fb);
w->writeC(fm.alg);
w->writeC(fm.ams);
// TODO: OPLL params
for (int i=0; i<4; i++) {
DivInstrumentFM::Operator& op=fm.op[i];
w->writeC(op.mult);
w->writeC(op.tl);
w->writeC(op.ar);
w->writeC(op.dr);
w->writeC(op.sl);
w->writeC(op.rr);
w->writeC(op.am);
w->writeC(op.rs);
w->writeC(op.dt|(op.dt2<<4));
w->writeC(op.d2r);
w->writeC(op.ssgEnv);
}
} else {
if (type!=DIV_INS_GB) {
w->writeC(std.volMacro.len);
for (int i=0; i<std.volMacro.len; i++) {
w->writeI(std.volMacro.val[i]);
}
if (std.volMacro.len>0) w->writeC(std.volMacro.loop);
}
bool arpMacroMode=false;
int arpMacroHowManyFixed=0;
int realArpMacroLen=std.arpMacro.len;
for (int j=0; j<std.arpMacro.len; j++) {
if ((std.arpMacro.val[j]&0xc0000000)==0x40000000 || (std.arpMacro.val[j]&0xc0000000)==0x80000000) {
arpMacroHowManyFixed++;
}
}
if (arpMacroHowManyFixed>=std.arpMacro.len-1) {
arpMacroMode=true;
}
if (std.arpMacro.len>0) {
if (arpMacroMode && std.arpMacro.val[std.arpMacro.len-1]==0 && std.arpMacro.loop>=std.arpMacro.len) {
realArpMacroLen--;
}
}
if (realArpMacroLen>127) realArpMacroLen=127;
w->writeC(realArpMacroLen);
if (arpMacroMode) {
for (int j=0; j<realArpMacroLen; j++) {
if ((std.arpMacro.val[j]&0xc0000000)==0x40000000 || (std.arpMacro.val[j]&0xc0000000)==0x80000000) {
w->writeI(std.arpMacro.val[j]^0x40000000);
} else {
w->writeI(std.arpMacro.val[j]);
}
}
} else {
for (int j=0; j<realArpMacroLen; j++) {
if ((std.arpMacro.val[j]&0xc0000000)==0x40000000 || (std.arpMacro.val[j]&0xc0000000)==0x80000000) {
w->writeI((std.arpMacro.val[j]^0x40000000)+12);
} else {
w->writeI(std.arpMacro.val[j]+12);
}
}
}
if (realArpMacroLen>0) {
w->writeC(std.arpMacro.loop);
}
w->writeC(arpMacroMode);
w->writeC(std.dutyMacro.len);
for (int i=0; i<std.dutyMacro.len; i++) {
w->writeI(std.dutyMacro.val[i]);
}
if (std.dutyMacro.len>0) w->writeC(std.dutyMacro.loop);
w->writeC(std.waveMacro.len);
for (int i=0; i<std.waveMacro.len; i++) {
if (type==DIV_INS_AY) {
w->writeI(std.waveMacro.val[i]-1);
} else {
w->writeI(std.waveMacro.val[i]);
}
}
if (std.waveMacro.len>0) w->writeC(std.waveMacro.loop);
if (type==DIV_INS_C64) {
w->writeC(c64.triOn);
w->writeC(c64.sawOn);
w->writeC(c64.pulseOn);
w->writeC(c64.noiseOn);
w->writeC(c64.a);
w->writeC(c64.d);
w->writeC(c64.s);
w->writeC(c64.r);
w->writeC((c64.duty*100)/4095);
w->writeC(c64.ringMod);
w->writeC(c64.oscSync);
w->writeC(c64.toFilter);
w->writeC(0); // this was volIsCutoff...
w->writeC(c64.initFilter);
w->writeC(c64.res);
w->writeC((c64.cut*100)/2047);
w->writeC(c64.hp);
w->writeC(c64.lp);
w->writeC(c64.bp);
w->writeC(c64.ch3off);
}
if (type==DIV_INS_GB) {
w->writeC(gb.envVol);
w->writeC(gb.envDir);
w->writeC(gb.envLen);
w->writeC(gb.soundLen);
}
}
FILE* outFile=ps_fopen(path,"wb");
if (outFile==NULL) {
logE("could not save instrument: %s!",strerror(errno));
w->finish();
return false;
}
if (fwrite(w->getFinalBuf(),1,w->size(),outFile)!=w->size()) {
logW("did not write entire instrument!");
}
fclose(outFile);
w->finish();
return true;
}