furnace/extern/fftw/mpi/ifftw-mpi.h
2022-05-31 03:24:29 -05:00

151 lines
5.3 KiB
C

/*
* Copyright (c) 2003, 2007-14 Matteo Frigo
* Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
*/
/* FFTW-MPI internal header file */
#ifndef __IFFTW_MPI_H__
#define __IFFTW_MPI_H__
#include "kernel/ifftw.h"
#include "rdft/rdft.h"
#include <mpi.h>
/* mpi problem flags: problem-dependent meaning, but in general
SCRAMBLED means some reordering *within* the dimensions, while
TRANSPOSED means some reordering *of* the dimensions */
#define SCRAMBLED_IN (1 << 0)
#define SCRAMBLED_OUT (1 << 1)
#define TRANSPOSED_IN (1 << 2)
#define TRANSPOSED_OUT (1 << 3)
#define RANK1_BIGVEC_ONLY (1 << 4) /* for rank=1, allow only bigvec solver */
#define ONLY_SCRAMBLEDP(flags) (!((flags) & ~(SCRAMBLED_IN|SCRAMBLED_OUT)))
#define ONLY_TRANSPOSEDP(flags) (!((flags) & ~(TRANSPOSED_IN|TRANSPOSED_OUT)))
#if defined(FFTW_SINGLE)
# define FFTW_MPI_TYPE MPI_FLOAT
#elif defined(FFTW_LDOUBLE)
# define FFTW_MPI_TYPE MPI_LONG_DOUBLE
#elif defined(FFTW_QUAD)
# error MPI quad-precision type is unknown
#else
# define FFTW_MPI_TYPE MPI_DOUBLE
#endif
/* all fftw-mpi identifiers start with fftw_mpi (or fftwf_mpi etc.) */
#define XM(name) X(CONCAT(mpi_, name))
/***********************************************************************/
/* block distributions */
/* a distributed dimension of length n with input and output block
sizes ib and ob, respectively. */
typedef enum { IB = 0, OB } block_kind;
typedef struct {
INT n;
INT b[2]; /* b[IB], b[OB] */
} ddim;
/* Loop over k in {IB, OB}. Note: need explicit casts for C++. */
#define FORALL_BLOCK_KIND(k) for (k = IB; k <= OB; k = (block_kind) (((int) k) + 1))
/* unlike tensors in the serial FFTW, the ordering of the dtensor
dimensions matters - both the array and the block layout are
row-major order. */
typedef struct {
int rnk;
#if defined(STRUCT_HACK_KR)
ddim dims[1];
#elif defined(STRUCT_HACK_C99)
ddim dims[];
#else
ddim *dims;
#endif
} dtensor;
/* dtensor.c: */
dtensor *XM(mkdtensor)(int rnk);
void XM(dtensor_destroy)(dtensor *sz);
dtensor *XM(dtensor_copy)(const dtensor *sz);
dtensor *XM(dtensor_canonical)(const dtensor *sz, int compress);
int XM(dtensor_validp)(const dtensor *sz);
void XM(dtensor_md5)(md5 *p, const dtensor *t);
void XM(dtensor_print)(const dtensor *t, printer *p);
/* block.c: */
/* for a single distributed dimension: */
INT XM(num_blocks)(INT n, INT block);
int XM(num_blocks_ok)(INT n, INT block, MPI_Comm comm);
INT XM(default_block)(INT n, int n_pes);
INT XM(block)(INT n, INT block, int which_block);
/* for multiple distributed dimensions: */
INT XM(num_blocks_total)(const dtensor *sz, block_kind k);
int XM(idle_process)(const dtensor *sz, block_kind k, int which_pe);
void XM(block_coords)(const dtensor *sz, block_kind k, int which_pe,
INT *coords);
INT XM(total_block)(const dtensor *sz, block_kind k, int which_pe);
int XM(is_local_after)(int dim, const dtensor *sz, block_kind k);
int XM(is_local)(const dtensor *sz, block_kind k);
int XM(is_block1d)(const dtensor *sz, block_kind k);
/* choose-radix.c */
INT XM(choose_radix)(ddim d, int n_pes, unsigned flags, int sign,
INT rblock[2], INT mblock[2]);
/***********************************************************************/
/* any_true.c */
int XM(any_true)(int condition, MPI_Comm comm);
int XM(md5_equal)(md5 m, MPI_Comm comm);
/* conf.c */
void XM(conf_standard)(planner *p);
/***********************************************************************/
/* rearrange.c */
/* Different ways to rearrange the vector dimension vn during transposition,
reflecting different tradeoffs between ease of transposition and
contiguity during the subsequent DFTs.
TODO: can we pare this down to CONTIG and DISCONTIG, at least
in MEASURE mode? SQUARE_MIDDLE is also used for 1d destroy-input DFTs. */
typedef enum {
CONTIG = 0, /* vn x 1: make subsequent DFTs contiguous */
DISCONTIG, /* P x (vn/P) for P processes */
SQUARE_BEFORE, /* try to get square transpose at beginning */
SQUARE_MIDDLE, /* try to get square transpose in the middle */
SQUARE_AFTER /* try to get square transpose at end */
} rearrangement;
/* skipping SQUARE_AFTER since it doesn't seem to offer any advantage
over SQUARE_BEFORE */
#define FORALL_REARRANGE(rearrange) for (rearrange = CONTIG; rearrange <= SQUARE_MIDDLE; rearrange = (rearrangement) (((int) rearrange) + 1))
int XM(rearrange_applicable)(rearrangement rearrange,
ddim dim0, INT vn, int n_pes);
INT XM(rearrange_ny)(rearrangement rearrange, ddim dim0, INT vn, int n_pes);
/***********************************************************************/
#endif /* __IFFTW_MPI_H__ */