furnace/src/engine/vgmOps.cpp
2023-10-11 02:48:39 -05:00

2721 lines
80 KiB
C++

/**
* Furnace Tracker - multi-system chiptune tracker
* Copyright (C) 2021-2023 tildearrow and contributors
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/
#include "engine.h"
#include "../ta-log.h"
#include "../utfutils.h"
#include "song.h"
constexpr int MASTER_CLOCK_PREC=(sizeof(void*)==8)?8:0;
void DivEngine::performVGMWrite(SafeWriter* w, DivSystem sys, DivRegWrite& write, int streamOff, double* loopTimer, double* loopFreq, int* loopSample, bool* sampleDir, bool isSecond, int* pendingFreq, int* playingSample, int* setPos, unsigned int* sampleOff8, unsigned int* sampleLen8, size_t bankOffset, bool directStream) {
unsigned char baseAddr1=isSecond?0xa0:0x50;
unsigned char baseAddr2=isSecond?0x80:0;
unsigned short baseAddr2S=isSecond?0x8000:0;
unsigned char smsAddr=isSecond?0x30:0x50;
unsigned char ggAddr=isSecond?0x3f:0x4f;
unsigned char rf5c68Addr=isSecond?0xb1:0xb0;
if (write.addr==0xffffffff) { // Furnace fake reset
switch (sys) {
case DIV_SYSTEM_YM2612:
case DIV_SYSTEM_YM2612_EXT:
case DIV_SYSTEM_YM2612_DUALPCM:
case DIV_SYSTEM_YM2612_DUALPCM_EXT:
for (int i=0; i<3; i++) { // set SL and RR to highest
w->writeC(2|baseAddr1);
w->writeC(0x80+i);
w->writeC(0xff);
w->writeC(2|baseAddr1);
w->writeC(0x84+i);
w->writeC(0xff);
w->writeC(2|baseAddr1);
w->writeC(0x88+i);
w->writeC(0xff);
w->writeC(2|baseAddr1);
w->writeC(0x8c+i);
w->writeC(0xff);
w->writeC(3|baseAddr1);
w->writeC(0x80+i);
w->writeC(0xff);
w->writeC(3|baseAddr1);
w->writeC(0x84+i);
w->writeC(0xff);
w->writeC(3|baseAddr1);
w->writeC(0x88+i);
w->writeC(0xff);
w->writeC(3|baseAddr1);
w->writeC(0x8c+i);
w->writeC(0xff);
}
for (int i=0; i<3; i++) { // note off
w->writeC(2|baseAddr1);
w->writeC(0x28);
w->writeC(i);
w->writeC(2|baseAddr1);
w->writeC(0x28);
w->writeC(4+i);
}
w->writeC(2|baseAddr1); // disable DAC
w->writeC(0x2b);
w->writeC(0);
break;
case DIV_SYSTEM_SMS:
for (int i=0; i<4; i++) {
w->writeC(smsAddr);
w->writeC(0x90|(i<<5)|15);
}
break;
case DIV_SYSTEM_T6W28:
for (int i=0; i<4; i++) {
w->writeC(0x30);
w->writeC(0x90|(i<<5)|15);
w->writeC(0x50);
w->writeC(0x90|(i<<5)|15);
}
break;
case DIV_SYSTEM_GB:
// square 1
w->writeC(0xb3);
w->writeC(2|baseAddr2);
w->writeC(0);
w->writeC(0xb3);
w->writeC(4|baseAddr2);
w->writeC(0x80);
// square 2
w->writeC(0xb3);
w->writeC(7|baseAddr2);
w->writeC(0);
w->writeC(0xb3);
w->writeC(9|baseAddr2);
w->writeC(0x80);
// wave
w->writeC(0xb3);
w->writeC(0x0c|baseAddr2);
w->writeC(0);
w->writeC(0xb3);
w->writeC(0x0e|baseAddr2);
w->writeC(0x80);
// noise
w->writeC(0xb3);
w->writeC(0x11|baseAddr2);
w->writeC(0);
w->writeC(0xb3);
w->writeC(0x13|baseAddr2);
w->writeC(0x80);
break;
case DIV_SYSTEM_PCE:
for (int i=0; i<6; i++) {
w->writeC(0xb9);
w->writeC(0|baseAddr2);
w->writeC(i);
w->writeC(0xb9);
w->writeC(4|baseAddr2);
w->writeC(0x5f);
w->writeC(0xb9);
w->writeC(4|baseAddr2);
w->writeC(0x1f);
for (int j=0; j<32; j++) {
w->writeC(0xb9);
w->writeC(6|baseAddr2);
w->writeC(0);
}
}
break;
case DIV_SYSTEM_NES:
w->writeC(0xb4);
w->writeC(0x15|baseAddr2);
w->writeC(0);
break;
case DIV_SYSTEM_YM2151:
for (int i=0; i<8; i++) {
w->writeC(4|baseAddr1);
w->writeC(0xe0+i);
w->writeC(0xff);
w->writeC(4|baseAddr1);
w->writeC(0xe8+i);
w->writeC(0xff);
w->writeC(4|baseAddr1);
w->writeC(0xf0+i);
w->writeC(0xff);
w->writeC(4|baseAddr1);
w->writeC(0xf8+i);
w->writeC(0xff);
w->writeC(4|baseAddr1);
w->writeC(0x08);
w->writeC(i);
}
break;
case DIV_SYSTEM_SEGAPCM:
case DIV_SYSTEM_SEGAPCM_COMPAT:
for (int i=0; i<16; i++) {
w->writeC(0xc0);
w->writeS((0x86|baseAddr2S)+(i<<3));
w->writeC(3);
}
break;
case DIV_SYSTEM_X1_010:
for (int i=0; i<16; i++) {
w->writeC(0xc8);
w->writeS_BE(baseAddr2S+(i<<3));
w->writeC(0);
}
break;
case DIV_SYSTEM_YM2610:
case DIV_SYSTEM_YM2610_FULL:
case DIV_SYSTEM_YM2610B:
case DIV_SYSTEM_YM2610_EXT:
case DIV_SYSTEM_YM2610_FULL_EXT:
case DIV_SYSTEM_YM2610B_EXT:
// TODO: YM2610B channels 1 and 4 and ADPCM-B
for (int i=0; i<2; i++) { // set SL and RR to highest
w->writeC(8|baseAddr1);
w->writeC(0x81+i);
w->writeC(0xff);
w->writeC(8|baseAddr1);
w->writeC(0x85+i);
w->writeC(0xff);
w->writeC(8|baseAddr1);
w->writeC(0x89+i);
w->writeC(0xff);
w->writeC(8|baseAddr1);
w->writeC(0x8d+i);
w->writeC(0xff);
w->writeC(9|baseAddr1);
w->writeC(0x81+i);
w->writeC(0xff);
w->writeC(9|baseAddr1);
w->writeC(0x85+i);
w->writeC(0xff);
w->writeC(9|baseAddr1);
w->writeC(0x89+i);
w->writeC(0xff);
w->writeC(9|baseAddr1);
w->writeC(0x8d+i);
w->writeC(0xff);
}
for (int i=0; i<2; i++) { // note off
w->writeC(8|baseAddr1);
w->writeC(0x28);
w->writeC(1+i);
w->writeC(8|baseAddr1);
w->writeC(0x28);
w->writeC(5+i);
}
// reset AY
w->writeC(8|baseAddr1);
w->writeC(7);
w->writeC(0x3f);
w->writeC(8|baseAddr1);
w->writeC(8);
w->writeC(0);
w->writeC(8|baseAddr1);
w->writeC(9);
w->writeC(0);
w->writeC(8|baseAddr1);
w->writeC(10);
w->writeC(0);
// reset sample
w->writeC(9|baseAddr1);
w->writeC(0);
w->writeC(0xbf);
break;
case DIV_SYSTEM_OPLL:
case DIV_SYSTEM_OPLL_DRUMS:
case DIV_SYSTEM_VRC7:
for (int i=0; i<9; i++) {
w->writeC(1|baseAddr1);
w->writeC(0x20+i);
w->writeC(0);
w->writeC(1|baseAddr1);
w->writeC(0x30+i);
w->writeC(0);
w->writeC(1|baseAddr1);
w->writeC(0x10+i);
w->writeC(0);
}
break;
case DIV_SYSTEM_YM2203:
case DIV_SYSTEM_YM2203_EXT:
for (int i=0; i<3; i++) { // set SL and RR to highest
w->writeC(5|baseAddr1);
w->writeC(0x80+i);
w->writeC(0xff);
w->writeC(5|baseAddr1);
w->writeC(0x84+i);
w->writeC(0xff);
w->writeC(5|baseAddr1);
w->writeC(0x88+i);
w->writeC(0xff);
w->writeC(5|baseAddr1);
w->writeC(0x8c+i);
w->writeC(0xff);
}
for (int i=0; i<3; i++) { // note off
w->writeC(5|baseAddr1);
w->writeC(0x28);
w->writeC(i);
}
// SSG
w->writeC(5|baseAddr1);
w->writeC(7);
w->writeC(0x3f);
w->writeC(5|baseAddr1);
w->writeC(8);
w->writeC(0);
w->writeC(5|baseAddr1);
w->writeC(9);
w->writeC(0);
w->writeC(5|baseAddr1);
w->writeC(10);
w->writeC(0);
break;
case DIV_SYSTEM_AY8910:
w->writeC(0xa0);
w->writeC(7|baseAddr2);
w->writeC(0x3f);
w->writeC(0xa0);
w->writeC(8|baseAddr2);
w->writeC(0);
w->writeC(0xa0);
w->writeC(9|baseAddr2);
w->writeC(0);
w->writeC(0xa0);
w->writeC(10|baseAddr2);
w->writeC(0);
break;
case DIV_SYSTEM_AY8930:
w->writeC(0xa0);
w->writeC(0x0d|baseAddr2);
w->writeC(0);
w->writeC(0xa0);
w->writeC(0x0d|baseAddr2);
w->writeC(0xa0);
break;
case DIV_SYSTEM_SAA1099:
w->writeC(0xbd);
w->writeC(0x1c|baseAddr2);
w->writeC(0x02);
w->writeC(0xbd);
w->writeC(0x14|baseAddr2);
w->writeC(0);
w->writeC(0xbd);
w->writeC(0x15|baseAddr2);
w->writeC(0);
for (int i=0; i<6; i++) {
w->writeC(0xbd);
w->writeC((0|baseAddr2)+i);
w->writeC(0);
}
break;
case DIV_SYSTEM_POKEY:
for (int i=0; i<9; i++) {
w->writeC(0xbb);
w->writeC(i|baseAddr2);
w->writeC(0);
}
break;
case DIV_SYSTEM_LYNX:
w->writeC(0x40);
w->writeC(0x44);
w->writeC(0xff); //stereo attenuation select
w->writeC(0x40);
w->writeC(0x50);
w->writeC(0x00); //stereo channel disable
for (int i=0; i<4; i++) { //stereo attenuation value
w->writeC(0x40);
w->writeC(0x40+i);
w->writeC(0xff);
}
break;
case DIV_SYSTEM_QSOUND:
for (int i=0; i<16; i++) {
w->writeC(0xc4);
w->writeC(0);
w->writeC(0);
w->writeC(2+(i*8));
w->writeC(0xc4);
w->writeC(0);
w->writeC(0);
w->writeC(6+(i*8));
}
for (int i=0; i<3; i++) {
w->writeC(0xc4);
w->writeC(0);
w->writeC(0);
w->writeC(0xcd+(i*4));
w->writeC(0xc4);
w->writeC(0x00);
w->writeC(0x01);
w->writeC(0xd6+i);
}
break;
case DIV_SYSTEM_ES5506:
for (int i=0; i<32; i++) {
for (int b=0; b<4; b++) {
w->writeC(0xbe);
w->writeC((0xf<<2)+b);
w->writeC(i);
}
unsigned int init_cr=0x0303;
for (int b=0; b<4; b++) {
w->writeC(0xbe);
w->writeC(b);
w->writeC(init_cr>>(24-(b<<3)));
}
for (int r=1; r<11; r++) {
for (int b=0; b<4; b++) {
w->writeC(0xbe);
w->writeC((r<<2)+b);
w->writeC(((r==7 || r==9) && b&2)?0xff:0);
}
}
for (int b=0; b<4; b++) {
w->writeC(0xbe);
w->writeC((0xf<<2)+b);
w->writeC(0x20|i);
}
for (int r=1; r<10; r++) {
for (int b=0; b<4; b++) {
w->writeC(0xbe);
w->writeC((r<<2)+b);
w->writeC(0);
}
}
}
break;
case DIV_SYSTEM_OPL:
case DIV_SYSTEM_OPL_DRUMS:
// disable envelope
for (int i=0; i<6; i++) {
w->writeC(0x0b|baseAddr1);
w->writeC(0x80+i);
w->writeC(0x0f);
w->writeC(0x0b|baseAddr1);
w->writeC(0x88+i);
w->writeC(0x0f);
w->writeC(0x0b|baseAddr1);
w->writeC(0x90+i);
w->writeC(0x0f);
}
// key off + freq reset
for (int i=0; i<9; i++) {
w->writeC(0x0b|baseAddr1);
w->writeC(0xa0+i);
w->writeC(0);
w->writeC(0x0b|baseAddr1);
w->writeC(0xb0+i);
w->writeC(0);
}
break;
case DIV_SYSTEM_Y8950:
case DIV_SYSTEM_Y8950_DRUMS:
// disable envelope
for (int i=0; i<6; i++) {
w->writeC(0x0c|baseAddr1);
w->writeC(0x80+i);
w->writeC(0x0f);
w->writeC(0x0c|baseAddr1);
w->writeC(0x88+i);
w->writeC(0x0f);
w->writeC(0x0c|baseAddr1);
w->writeC(0x90+i);
w->writeC(0x0f);
}
// key off + freq reset
for (int i=0; i<9; i++) {
w->writeC(0x0c|baseAddr1);
w->writeC(0xa0+i);
w->writeC(0);
w->writeC(0x0c|baseAddr1);
w->writeC(0xb0+i);
w->writeC(0);
}
// TODO: ADPCM
break;
case DIV_SYSTEM_OPL2:
case DIV_SYSTEM_OPL2_DRUMS:
// disable envelope
for (int i=0; i<6; i++) {
w->writeC(0x0a|baseAddr1);
w->writeC(0x80+i);
w->writeC(0x0f);
w->writeC(0x0a|baseAddr1);
w->writeC(0x88+i);
w->writeC(0x0f);
w->writeC(0x0a|baseAddr1);
w->writeC(0x90+i);
w->writeC(0x0f);
}
// key off + freq reset
for (int i=0; i<9; i++) {
w->writeC(0x0a|baseAddr1);
w->writeC(0xa0+i);
w->writeC(0);
w->writeC(0x0a|baseAddr1);
w->writeC(0xb0+i);
w->writeC(0);
}
break;
case DIV_SYSTEM_OPL3:
case DIV_SYSTEM_OPL3_DRUMS:
// disable envelope
for (int i=0; i<6; i++) {
w->writeC(0x0e|baseAddr1);
w->writeC(0x80+i);
w->writeC(0x0f);
w->writeC(0x0e|baseAddr1);
w->writeC(0x88+i);
w->writeC(0x0f);
w->writeC(0x0e|baseAddr1);
w->writeC(0x90+i);
w->writeC(0x0f);
w->writeC(0x0f|baseAddr1);
w->writeC(0x80+i);
w->writeC(0x0f);
w->writeC(0x0f|baseAddr1);
w->writeC(0x88+i);
w->writeC(0x0f);
w->writeC(0x0f|baseAddr1);
w->writeC(0x90+i);
w->writeC(0x0f);
}
// key off + freq reset
for (int i=0; i<9; i++) {
w->writeC(0x0e|baseAddr1);
w->writeC(0xa0+i);
w->writeC(0);
w->writeC(0x0e|baseAddr1);
w->writeC(0xb0+i);
w->writeC(0);
w->writeC(0x0f|baseAddr1);
w->writeC(0xa0+i);
w->writeC(0);
w->writeC(0x0f|baseAddr1);
w->writeC(0xb0+i);
w->writeC(0);
}
// reset 4-op
w->writeC(0x0f|baseAddr1);
w->writeC(0x04);
w->writeC(0x00);
break;
case DIV_SYSTEM_SCC:
case DIV_SYSTEM_SCC_PLUS:
w->writeC(0xd2);
w->writeC(baseAddr2|3);
w->writeC(0);
w->writeC(0);
break;
case DIV_SYSTEM_RF5C68:
w->writeC(rf5c68Addr);
w->writeC(7);
w->writeC(0);
w->writeC(rf5c68Addr);
w->writeC(8);
w->writeC(0xff);
break;
case DIV_SYSTEM_MSM6258:
w->writeC(0xb8); // stop
w->writeC(baseAddr2|0);
w->writeC(1);
break;
case DIV_SYSTEM_MSM6295:
w->writeC(0xb8); // disable all channels
w->writeC(baseAddr2|0);
w->writeC(0x78);
w->writeC(0xb8); // select rate
w->writeC(baseAddr2|12);
w->writeC(1);
break;
case DIV_SYSTEM_VBOY:
// isn't it amazing when a chip has a built-in reset command?
w->writeC(0xc7);
w->writeS_BE(baseAddr2S|(0x580>>2));
w->writeC(0xff);
break;
case DIV_SYSTEM_GA20:
for (int i=0; i<4; i++) {
w->writeC(0xbf); // mute
w->writeC((baseAddr2|5)+(i*8));
w->writeC(0);
w->writeC(0xbf); // keyoff
w->writeC((baseAddr2|6)+(i*8));
w->writeC(0);
}
break;
case DIV_SYSTEM_K053260:
for (int i=0; i<4; i++) {
w->writeC(0xba); // mute
w->writeC(baseAddr2|0x2f);
w->writeC(0);
w->writeC(0xba); // keyoff
w->writeC(baseAddr2|0x28);
w->writeC(0);
}
break;
case DIV_SYSTEM_C140:
for (int i=0; i<24; i++) {
w->writeC(0xd4); // mute
w->writeS_BE(baseAddr2S|(i<<4)|0);
w->writeC(0);
w->writeC(0xd4);
w->writeS_BE(baseAddr2S|(i<<4)|1);
w->writeC(0);
w->writeC(0xd4); // keyoff
w->writeS_BE(baseAddr2S|(i<<4)|5);
w->writeC(0);
}
break;
case DIV_SYSTEM_C219:
for (int i=0; i<16; i++) {
w->writeC(0xd4); // mute
w->writeS_BE(baseAddr2S|(i<<4)|0);
w->writeC(0);
w->writeC(0xd4);
w->writeS_BE(baseAddr2S|(i<<4)|1);
w->writeC(0);
w->writeC(0xd4); // keyoff
w->writeS_BE(baseAddr2S|(i<<4)|5);
w->writeC(0);
}
break;
default:
break;
}
}
if (write.addr==0xffff0004) { // switch sample bank
switch (sys) {
case DIV_SYSTEM_NES: {
unsigned int bankAddr=bankOffset+(write.val<<14);
w->writeC(0x68);
w->writeC(0x6c);
w->writeC(0x07|(isSecond?0x80:0x00));
w->writeC(bankAddr&0xff);
w->writeC((bankAddr>>8)&0xff);
w->writeC((bankAddr>>16)&0xff);
w->writeC(0x00);
w->writeC(0xc0);
w->writeC(0x00);
w->writeC(0x00);
w->writeC(0x40);
w->writeC(0x00);
break;
}
default:
break;
}
}
if (write.addr>=0xffff0000) { // Furnace special command
if (!directStream) {
unsigned char streamID=streamOff+((write.addr&0xff00)>>8);
logD("writing stream command %x:%x with stream ID %d",write.addr,write.val,streamID);
switch (write.addr&0xff) {
case 0: // play sample
if (write.val<(unsigned int)song.sampleLen) {
if (playingSample[streamID]!=(int)write.val) {
pendingFreq[streamID]=write.val;
} else {
DivSample* sample=song.sample[write.val];
int pos=sampleOff8[write.val&0xff]+setPos[streamID];
int len=(int)sampleLen8[write.val&0xff]-setPos[streamID];
if (len<0) len=0;
if (setPos[streamID]!=0) {
if (len<=0) {
w->writeC(0x94);
w->writeC(streamID);
} else {
w->writeC(0x93);
w->writeC(streamID);
w->writeI(pos);
w->writeC(1|((sample->getLoopStartPosition(DIV_SAMPLE_DEPTH_8BIT)==0 && sample->isLoopable())?0x80:0)|(sampleDir[streamID]?0x10:0)); // flags
w->writeI(len);
}
} else {
w->writeC(0x95);
w->writeC(streamID);
w->writeS(write.val); // sample number
w->writeC((sample->getLoopStartPosition(DIV_SAMPLE_DEPTH_8BIT)==0 && sample->isLoopable())|(sampleDir[streamID]?0x10:0)); // flags
}
if (sample->isLoopable() && !sampleDir[streamID]) {
loopTimer[streamID]=len;
loopSample[streamID]=write.val;
}
playingSample[streamID]=write.val;
setPos[streamID]=0;
}
}
break;
case 1: { // set sample freq
int realFreq=write.val;
if (realFreq<0) realFreq=0;
if (realFreq>44100) realFreq=44100;
w->writeC(0x92);
w->writeC(streamID);
w->writeI(realFreq);
loopFreq[streamID]=realFreq;
if (pendingFreq[streamID]!=-1) {
DivSample* sample=song.sample[pendingFreq[streamID]];
int pos=sampleOff8[pendingFreq[streamID]&0xff]+setPos[streamID];
int len=(int)sampleLen8[pendingFreq[streamID]&0xff]-setPos[streamID];
if (len<0) len=0;
if (setPos[streamID]!=0) {
if (len<=0) {
w->writeC(0x94);
w->writeC(streamID);
} else {
w->writeC(0x93);
w->writeC(streamID);
w->writeI(pos);
w->writeC(1|((sample->getLoopStartPosition(DIV_SAMPLE_DEPTH_8BIT)==0 && sample->isLoopable())?0x80:0)|(sampleDir[streamID]?0x10:0)); // flags
w->writeI(len);
}
} else {
w->writeC(0x95);
w->writeC(streamID);
w->writeS(pendingFreq[streamID]); // sample number
w->writeC((sample->getLoopStartPosition(DIV_SAMPLE_DEPTH_8BIT)==0 && sample->isLoopable())|(sampleDir[streamID]?0x10:0)); // flags
}
if (sample->isLoopable() && !sampleDir[streamID]) {
loopTimer[streamID]=len;
loopSample[streamID]=pendingFreq[streamID];
}
playingSample[streamID]=pendingFreq[streamID];
pendingFreq[streamID]=-1;
setPos[streamID]=0;
}
break;
}
case 2: // stop sample
w->writeC(0x94);
w->writeC(streamID);
loopSample[streamID]=-1;
playingSample[streamID]=-1;
pendingFreq[streamID]=-1;
break;
case 3: // set sample direction
sampleDir[streamID]=write.val;
break;
case 5: // set sample pos
setPos[streamID]=write.val;
if (playingSample[streamID]!=-1 && pendingFreq[streamID]==-1) {
// play the sample again
DivSample* sample=song.sample[playingSample[streamID]];
int pos=sampleOff8[playingSample[streamID]&0xff]+setPos[streamID];
int len=(int)sampleLen8[playingSample[streamID]&0xff]-setPos[streamID];
if (len<0) len=0;
if (setPos[streamID]!=0) {
if (len<=0) {
w->writeC(0x94);
w->writeC(streamID);
} else {
w->writeC(0x93);
w->writeC(streamID);
w->writeI(pos);
w->writeC(1|((sample->getLoopStartPosition(DIV_SAMPLE_DEPTH_8BIT)==0 && sample->isLoopable())?0x80:0)|(sampleDir[streamID]?0x10:0)); // flags
w->writeI(len);
}
} else {
w->writeC(0x95);
w->writeC(streamID);
w->writeS(playingSample[streamID]); // sample number
w->writeC((sample->getLoopStartPosition(DIV_SAMPLE_DEPTH_8BIT)==0 && sample->isLoopable())|(sampleDir[streamID]?0x10:0)); // flags
}
if (sample->isLoopable() && !sampleDir[streamID]) {
loopTimer[streamID]=len;
loopSample[streamID]=playingSample[streamID];
}
}
break;
}
}
return;
}
switch (sys) {
case DIV_SYSTEM_YM2612:
case DIV_SYSTEM_YM2612_EXT:
case DIV_SYSTEM_YM2612_DUALPCM:
case DIV_SYSTEM_YM2612_DUALPCM_EXT:
switch (write.addr>>8) {
case 0: // port 0
w->writeC(2|baseAddr1);
w->writeC(write.addr&0xff);
w->writeC(write.val);
break;
case 1: // port 1
w->writeC(3|baseAddr1);
w->writeC(write.addr&0xff);
w->writeC(write.val);
break;
case 2: // PSG
w->writeC(smsAddr);
w->writeC(write.val);
break;
}
break;
case DIV_SYSTEM_SMS:
if (write.addr==1) {
w->writeC(ggAddr);
} else {
w->writeC(smsAddr);
}
w->writeC(write.val);
break;
case DIV_SYSTEM_T6W28:
if (write.addr) {
w->writeC(0x30);
} else {
w->writeC(0x50);
}
w->writeC(write.val);
break;
case DIV_SYSTEM_GB:
w->writeC(0xb3);
w->writeC(baseAddr2|((write.addr-16)&0xff));
w->writeC(write.val);
break;
case DIV_SYSTEM_PCE:
w->writeC(0xb9);
w->writeC(baseAddr2|(write.addr&0xff));
w->writeC(write.val);
break;
case DIV_SYSTEM_NES:
w->writeC(0xb4);
w->writeC(baseAddr2|(write.addr&0xff));
w->writeC(write.val);
break;
case DIV_SYSTEM_FDS: // yeah
w->writeC(0xb4);
if ((write.addr&0xff)==0x23) {
w->writeC(baseAddr2|0x3f);
} else if ((write.addr&0xff)>=0x80) {
w->writeC(baseAddr2|(0x20+(write.addr&0x7f)));
} else {
w->writeC(baseAddr2|(write.addr&0xff));
}
w->writeC(write.val);
break;
case DIV_SYSTEM_YM2151:
w->writeC(4|baseAddr1);
w->writeC(write.addr&0xff);
w->writeC(write.val);
break;
case DIV_SYSTEM_SEGAPCM:
case DIV_SYSTEM_SEGAPCM_COMPAT:
w->writeC(0xc0);
w->writeS(baseAddr2S|(write.addr&0xffff));
w->writeC(write.val);
break;
case DIV_SYSTEM_X1_010:
w->writeC(0xc8);
w->writeS_BE(baseAddr2S|(write.addr&0x1fff));
w->writeC(write.val);
break;
case DIV_SYSTEM_YM2610:
case DIV_SYSTEM_YM2610_FULL:
case DIV_SYSTEM_YM2610B:
case DIV_SYSTEM_YM2610_EXT:
case DIV_SYSTEM_YM2610_FULL_EXT:
case DIV_SYSTEM_YM2610B_EXT:
switch (write.addr>>8) {
case 0: // port 0
w->writeC(8|baseAddr1);
w->writeC(write.addr&0xff);
w->writeC(write.val);
break;
case 1: // port 1
w->writeC(9|baseAddr1);
w->writeC(write.addr&0xff);
w->writeC(write.val);
break;
}
break;
case DIV_SYSTEM_YM2203:
case DIV_SYSTEM_YM2203_EXT:
w->writeC(5|baseAddr1);
w->writeC(write.addr&0xff);
w->writeC(write.val);
break;
case DIV_SYSTEM_YM2608:
case DIV_SYSTEM_YM2608_EXT:
switch (write.addr>>8) {
case 0: // port 0
w->writeC(6|baseAddr1);
w->writeC(write.addr&0xff);
w->writeC(write.val);
break;
case 1: // port 1
w->writeC(7|baseAddr1);
w->writeC(write.addr&0xff);
w->writeC(write.val);
break;
}
break;
case DIV_SYSTEM_OPLL:
case DIV_SYSTEM_OPLL_DRUMS:
case DIV_SYSTEM_VRC7:
w->writeC(1|baseAddr1);
w->writeC(write.addr&0xff);
w->writeC(write.val);
break;
case DIV_SYSTEM_AY8910:
case DIV_SYSTEM_AY8930:
w->writeC(0xa0);
w->writeC(baseAddr2|(write.addr&0xff));
w->writeC(write.val);
break;
case DIV_SYSTEM_SAA1099:
w->writeC(0xbd);
w->writeC(baseAddr2|(write.addr&0xff));
w->writeC(write.val);
break;
case DIV_SYSTEM_POKEY:
w->writeC(0xbb);
w->writeC(baseAddr2|(write.addr&0x0f));
w->writeC(write.val&0xff);
break;
case DIV_SYSTEM_LYNX:
w->writeC(0x40);
w->writeC(write.addr&0xff);
w->writeC(write.val&0xff);
break;
case DIV_SYSTEM_QSOUND:
w->writeC(0xc4);
w->writeC((write.val>>8)&0xff);
w->writeC(write.val&0xff);
w->writeC(write.addr&0xff);
break;
case DIV_SYSTEM_SWAN:
if ((write.addr&0x7f)<0x40) {
w->writeC(0xbc);
w->writeC(baseAddr2|(write.addr&0x3f));
w->writeC(write.val&0xff);
} else {
// (Wave) RAM write
w->writeC(0xc6);
w->writeS_BE(baseAddr2S|(write.addr&0x3f));
w->writeC(write.val&0xff);
}
break;
case DIV_SYSTEM_ES5506:
w->writeC(0xbe);
w->writeC(write.addr&0xff);
w->writeC(write.val&0xff);
break;
case DIV_SYSTEM_VBOY:
w->writeC(0xc7);
w->writeS_BE(baseAddr2S|(write.addr>>2));
w->writeC(write.val&0xff);
break;
case DIV_SYSTEM_OPL:
case DIV_SYSTEM_OPL_DRUMS:
w->writeC(0x0b|baseAddr1);
w->writeC(write.addr&0xff);
w->writeC(write.val);
break;
case DIV_SYSTEM_Y8950:
case DIV_SYSTEM_Y8950_DRUMS:
w->writeC(0x0c|baseAddr1);
w->writeC(write.addr&0xff);
w->writeC(write.val);
break;
case DIV_SYSTEM_OPL2:
case DIV_SYSTEM_OPL2_DRUMS:
w->writeC(0x0a|baseAddr1);
w->writeC(write.addr&0xff);
w->writeC(write.val);
break;
case DIV_SYSTEM_OPL3:
case DIV_SYSTEM_OPL3_DRUMS:
switch (write.addr>>8) {
case 0: // port 0
w->writeC(0x0e|baseAddr1);
w->writeC(write.addr&0xff);
w->writeC(write.val);
break;
case 1: // port 1
w->writeC(0x0f|baseAddr1);
w->writeC(write.addr&0xff);
w->writeC(write.val);
break;
}
break;
case DIV_SYSTEM_SCC:
if (write.addr<0x80) {
w->writeC(0xd2);
w->writeC(baseAddr2|0);
w->writeC(write.addr&0x7f);
w->writeC(write.val&0xff);
} else if (write.addr<0x8a) {
w->writeC(0xd2);
w->writeC(baseAddr2|1);
w->writeC((write.addr-0x80)&0x7f);
w->writeC(write.val&0xff);
} else if (write.addr<0x8f) {
w->writeC(0xd2);
w->writeC(baseAddr2|2);
w->writeC((write.addr-0x8a)&0x7f);
w->writeC(write.val&0xff);
} else if (write.addr<0x90) {
w->writeC(0xd2);
w->writeC(baseAddr2|3);
w->writeC((write.addr-0x8f)&0x7f);
w->writeC(write.val&0xff);
} else if (write.addr>=0xe0) {
w->writeC(0xd2);
w->writeC(baseAddr2|5);
w->writeC((write.addr-0xe0)&0x7f);
w->writeC(write.val&0xff);
} else {
logW("SCC: writing to unmapped address %.2x!",write.addr);
}
break;
case DIV_SYSTEM_SCC_PLUS:
if (write.addr<0x80) {
w->writeC(0xd2);
w->writeC(baseAddr2|0);
w->writeC(write.addr&0x7f);
w->writeC(write.val&0xff);
} else if (write.addr<0xa0) {
w->writeC(0xd2);
w->writeC(baseAddr2|4);
w->writeC(write.addr);
w->writeC(write.val&0xff);
} else if (write.addr<0xaa) {
w->writeC(0xd2);
w->writeC(baseAddr2|1);
w->writeC((write.addr-0xa0)&0x7f);
w->writeC(write.val&0xff);
} else if (write.addr<0xaf) {
w->writeC(0xd2);
w->writeC(baseAddr2|2);
w->writeC((write.addr-0xaa)&0x7f);
w->writeC(write.val&0xff);
} else if (write.addr<0xb0) {
w->writeC(0xd2);
w->writeC(baseAddr2|3);
w->writeC((write.addr-0xaf)&0x7f);
w->writeC(write.val&0xff);
} else if (write.addr>=0xe0) {
w->writeC(0xd2);
w->writeC(baseAddr2|5);
w->writeC((write.addr-0xe0)&0x7f);
w->writeC(write.val&0xff);
} else {
logW("SCC+: writing to unmapped address %.2x!",write.addr);
}
break;
case DIV_SYSTEM_YMZ280B:
w->writeC(0x0d|baseAddr1);
w->writeC(write.addr&0xff);
w->writeC(write.val&0xff);
break;
case DIV_SYSTEM_RF5C68:
w->writeC(rf5c68Addr);
w->writeC(write.addr&0xff);
w->writeC(write.val);
break;
case DIV_SYSTEM_MSM6258:
w->writeC(0xb7);
w->writeC(baseAddr2|(write.addr&0x7f));
w->writeC(write.val);
logV("MSM write to %.2x %.2x",write.addr,write.val);
break;
case DIV_SYSTEM_MSM6295:
w->writeC(0xb8);
w->writeC(baseAddr2|(write.addr&0x7f));
w->writeC(write.val);
break;
case DIV_SYSTEM_GA20:
w->writeC(0xbf);
w->writeC(baseAddr2|(write.addr&0x7f));
w->writeC(write.val);
break;
case DIV_SYSTEM_K053260:
w->writeC(0xba);
w->writeC(baseAddr2|(write.addr&0x3f));
w->writeC(write.val&0xff);
break;
case DIV_SYSTEM_C140:
case DIV_SYSTEM_C219:
w->writeC(0xd4);
w->writeS_BE(baseAddr2S|(write.addr&0x1ff));
w->writeC(write.val&0xff);
break;
default:
logW("write not handled!");
break;
}
}
#define CHIP_VOL(_id,_mult) { \
double _vol=fabs((float)song.systemVol[i])*256.0*_mult; \
if (_vol<0.0) _vol=0.0; \
if (_vol>32767.0) _vol=32767.0; \
chipVolSum+=(unsigned int)(_vol/_mult); \
chipAccounting++; \
chipVol.push_back((_id)|(0x80000000)|(((unsigned int)_vol)<<16)); \
}
#define CHIP_VOL_SECOND(_id,_mult) { \
double _vol=fabs((float)song.systemVol[i])*256.0*_mult; \
if (_vol<0.0) _vol=0.0; \
if (_vol>32767.0) _vol=32767.0; \
chipVolSum+=(unsigned int)(_vol/_mult); \
chipAccounting++; \
chipVol.push_back((_id)|(0x80000100)|(((unsigned int)_vol)<<16)); \
}
SafeWriter* DivEngine::saveVGM(bool* sysToExport, bool loop, int version, bool patternHints, bool directStream, int trailingTicks) {
if (version<0x150) {
lastError="VGM version is too low";
return NULL;
}
stop();
repeatPattern=false;
setOrder(0);
BUSY_BEGIN_SOFT;
double origRate=got.rate;
got.rate=44100;
// determine loop point
int loopOrder=0;
int loopRow=0;
int loopEnd=0;
walkSong(loopOrder,loopRow,loopEnd);
logI("loop point: %d %d",loopOrder,loopRow);
warnings="";
curOrder=0;
freelance=false;
playing=false;
extValuePresent=false;
remainingLoops=-1;
// play the song ourselves
bool done=false;
int writeCount=0;
int gd3Off=0;
int hasSN=0;
int snNoiseConfig=9;
int snNoiseSize=16;
int snFlags=0;
int hasOPLL=0;
int hasOPN2=0;
int hasOPM=0;
int hasSegaPCM=0;
int segaPCMOffset=0xf8000d;
int hasRFC=0;
int hasOPN=0;
int hasOPNA=0;
int hasOPNB=0;
int hasOPL2=0;
int hasOPL=0;
int hasY8950=0;
int hasOPL3=0;
int hasOPL4=0;
int hasOPX=0;
int hasZ280=0;
int hasRFC1=0;
int hasPWM=0;
int hasAY=0;
int ayConfig=0;
int ayFlags=0;
int hasGB=0;
int hasNES=0;
int hasMultiPCM=0;
int hasuPD7759=0;
int hasOKIM6258=0;
int hasK054539=0;
int hasOKIM6295=0;
int hasK051649=0;
int hasPCE=0;
int hasC140=0;
int c140Type=0;
int hasK053260=0;
int hasPOKEY=0;
int hasQSound=0;
int hasSCSP=0;
int hasSwan=0;
int hasVSU=0;
int hasSAA=0;
int hasES5503=0;
int hasES5505=0;
int hasX1=0;
int hasC352=0;
int hasGA20=0;
int hasLynx=0;
int howManyChips=0;
int chipVolSum=0;
int chipAccounting=0;
int loopPos=-1;
int loopTickSong=-1;
int songTick=0;
unsigned int sampleOff8[256];
unsigned int sampleLen8[256];
unsigned int sampleOffSegaPCM[256];
SafeWriter* w=new SafeWriter;
w->init();
// write header
w->write("Vgm ",4);
w->writeI(0); // will be written later
w->writeI(version);
bool willExport[DIV_MAX_CHIPS];
bool isSecond[DIV_MAX_CHIPS];
int streamIDs[DIV_MAX_CHIPS];
size_t bankOffset[DIV_MAX_CHIPS];
double loopTimer[DIV_MAX_CHANS];
double loopFreq[DIV_MAX_CHANS];
int loopSample[DIV_MAX_CHANS];
bool sampleDir[DIV_MAX_CHANS];
int pendingFreq[DIV_MAX_CHANS];
int playingSample[DIV_MAX_CHANS];
int setPos[DIV_MAX_CHANS];
std::vector<unsigned int> chipVol;
std::vector<DivDelayedWrite> delayedWrites[DIV_MAX_CHIPS];
std::vector<std::pair<int,DivDelayedWrite>> sortedWrites;
std::vector<size_t> tickPos;
std::vector<int> tickSample;
bool trailing=false;
bool beenOneLoopAlready=false;
bool mayWriteRate=(fmod(curSubSong->hz,1.0)<0.00001 || fmod(curSubSong->hz,1.0)>0.99999);
int countDown=MAX(0,trailingTicks)+1;
memset(bankOffset,0,DIV_MAX_CHIPS*sizeof(size_t));
for (int i=0; i<DIV_MAX_CHANS; i++) {
loopTimer[i]=0;
loopFreq[i]=0;
loopSample[i]=-1;
pendingFreq[i]=-1;
playingSample[i]=-1;
setPos[i]=0;
sampleDir[i]=false;
}
bool writeDACSamples=false;
bool writeNESSamples=false;
bool writePCESamples=false;
bool writeVOXSamples=false;
DivDispatch* writeADPCM_OPNA[2]={NULL,NULL};
DivDispatch* writeADPCM_OPNB[2]={NULL,NULL};
DivDispatch* writeADPCM_Y8950[2]={NULL,NULL};
DivDispatch* writeSegaPCM[2]={NULL,NULL};
DivDispatch* writeX1010[2]={NULL,NULL};
DivDispatch* writeQSound[2]={NULL,NULL};
DivDispatch* writeES5506[2]={NULL,NULL};
DivDispatch* writeZ280[2]={NULL,NULL};
DivDispatch* writeRF5C68[2]={NULL,NULL};
DivDispatch* writeMSM6295[2]={NULL,NULL};
DivDispatch* writeGA20[2]={NULL,NULL};
DivDispatch* writeK053260[2]={NULL,NULL};
DivDispatch* writeC140[2]={NULL,NULL};
DivDispatch* writeC219[2]={NULL,NULL};
DivDispatch* writeNES[2]={NULL,NULL};
int writeNESIndex[2]={0,0};
size_t bankOffsetNESCurrent=0;
size_t bankOffsetNES[2]={0,0};
for (int i=0; i<song.systemLen; i++) {
willExport[i]=false;
isSecond[i]=false;
streamIDs[i]=0;
if (sysToExport!=NULL) {
if (!sysToExport[i]) continue;
}
if (minVGMVersion(song.system[i])>version) continue;
switch (song.system[i]) {
case DIV_SYSTEM_SMS:
if (!hasSN) {
hasSN=disCont[i].dispatch->chipClock;
CHIP_VOL(0,4.0);
willExport[i]=true;
switch (song.systemFlags[i].getInt("chipType",0)) {
case 1: // real SN
snNoiseConfig=3;
snNoiseSize=15;
break;
case 2: // real SN atari bass (seemingly unsupported)
snNoiseConfig=3;
snNoiseSize=15;
break;
default: // Sega VDP
snNoiseConfig=9;
snNoiseSize=16;
break;
}
} else if (!(hasSN&0x40000000)) {
isSecond[i]=true;
willExport[i]=true;
CHIP_VOL_SECOND(0,4.0);
hasSN|=0x40000000;
howManyChips++;
}
break;
case DIV_SYSTEM_GB:
if (!hasGB) {
hasGB=disCont[i].dispatch->chipClock;
CHIP_VOL(19,0.75);
willExport[i]=true;
} else if (!(hasGB&0x40000000)) {
isSecond[i]=true;
CHIP_VOL_SECOND(19,0.75);
willExport[i]=true;
hasGB|=0x40000000;
howManyChips++;
}
break;
case DIV_SYSTEM_PCE:
if (!hasPCE) {
hasPCE=disCont[i].dispatch->chipClock;
CHIP_VOL(27,0.98);
willExport[i]=true;
writePCESamples=true;
} else if (!(hasPCE&0x40000000)) {
isSecond[i]=true;
CHIP_VOL(27,0.98);
willExport[i]=true;
hasPCE|=0x40000000;
howManyChips++;
}
break;
case DIV_SYSTEM_NES:
if (!hasNES) {
hasNES=disCont[i].dispatch->chipClock;
CHIP_VOL(20,1.7);
willExport[i]=true;
writeNESSamples=true;
writeNES[0]=disCont[i].dispatch;
writeNESIndex[0]=i;
} else if (!(hasNES&0x40000000)) {
isSecond[i]=true;
CHIP_VOL_SECOND(20,1.7);
willExport[i]=true;
hasNES|=0x40000000;
writeNES[1]=disCont[i].dispatch;
writeNESIndex[1]=i;
howManyChips++;
}
break;
case DIV_SYSTEM_SEGAPCM:
case DIV_SYSTEM_SEGAPCM_COMPAT:
if (!hasSegaPCM) {
hasSegaPCM=4000000;
CHIP_VOL(4,0.67);
willExport[i]=true;
writeSegaPCM[0]=disCont[i].dispatch;
} else if (!(hasSegaPCM&0x40000000)) {
isSecond[i]=true;
CHIP_VOL_SECOND(4,0.67);
willExport[i]=true;
writeSegaPCM[1]=disCont[i].dispatch;
hasSegaPCM|=0x40000000;
howManyChips++;
}
break;
case DIV_SYSTEM_X1_010:
if (!hasX1) {
hasX1=disCont[i].dispatch->chipClock;
CHIP_VOL(38,2.0);
willExport[i]=true;
writeX1010[0]=disCont[i].dispatch;
} else if (!(hasX1&0x40000000)) {
isSecond[i]=true;
CHIP_VOL_SECOND(38,2.0);
willExport[i]=true;
writeX1010[1]=disCont[i].dispatch;
hasX1|=0x40000000;
howManyChips++;
}
break;
case DIV_SYSTEM_YM2610:
case DIV_SYSTEM_YM2610_FULL:
case DIV_SYSTEM_YM2610B:
case DIV_SYSTEM_YM2610_EXT:
case DIV_SYSTEM_YM2610_FULL_EXT:
case DIV_SYSTEM_YM2610B_EXT:
if (!hasOPNB) {
hasOPNB=disCont[i].dispatch->chipClock;
CHIP_VOL(8,1.0);
CHIP_VOL(0x88,1.25);
willExport[i]=true;
writeADPCM_OPNB[0]=disCont[i].dispatch;
} else if (!(hasOPNB&0x40000000)) {
isSecond[i]=true;
CHIP_VOL_SECOND(8,1.0);
CHIP_VOL_SECOND(0x88,1.25);
willExport[i]=true;
writeADPCM_OPNB[1]=disCont[i].dispatch;
hasOPNB|=0x40000000;
howManyChips++;
}
if (((song.system[i]==DIV_SYSTEM_YM2610B) || (song.system[i]==DIV_SYSTEM_YM2610B_EXT)) && (!(hasOPNB&0x80000000))) { // YM2610B flag
hasOPNB|=0x80000000;
}
break;
case DIV_SYSTEM_AY8910:
case DIV_SYSTEM_AY8930: {
if (!hasAY) {
bool hasClockDivider=false; // Configurable clock divider
bool hasStereo=true; // Stereo
hasAY=disCont[i].dispatch->chipClock;
ayFlags=1;
if (song.system[i]==DIV_SYSTEM_AY8930) { // AY8930
ayConfig=0x03;
hasClockDivider=true;
} else {
switch (song.systemFlags[i].getInt("chipType",0)) {
case 1: // YM2149
ayConfig=0x10;
hasClockDivider=true;
break;
case 2: // Sunsoft 5B
ayConfig=0x10;
ayFlags|=0x12; // Clock internally divided, Single sound output
hasStereo=false; // due to above, can't be per-channel stereo configurable
break;
case 3: // AY8914
ayConfig=0x04;
break;
default: // AY8910
ayConfig=0x00;
break;
}
}
if (hasClockDivider && song.systemFlags[i].getBool("halfClock",false)) {
ayFlags|=0x10;
}
if (hasStereo && song.systemFlags[i].getBool("stereo",false)) {
ayFlags|=0x80;
}
CHIP_VOL(18,1.0);
willExport[i]=true;
} else if (!(hasAY&0x40000000)) {
isSecond[i]=true;
CHIP_VOL_SECOND(18,1.0);
willExport[i]=true;
hasAY|=0x40000000;
howManyChips++;
}
break;
}
case DIV_SYSTEM_SAA1099:
if (!hasSAA) {
hasSAA=disCont[i].dispatch->chipClock;
CHIP_VOL(35,1.0);
willExport[i]=true;
} else if (!(hasSAA&0x40000000)) {
isSecond[i]=true;
CHIP_VOL_SECOND(35,1.0);
willExport[i]=true;
hasSAA|=0x40000000;
howManyChips++;
}
break;
case DIV_SYSTEM_YM2612:
case DIV_SYSTEM_YM2612_EXT:
case DIV_SYSTEM_YM2612_DUALPCM:
case DIV_SYSTEM_YM2612_DUALPCM_EXT:
if (!hasOPN2) {
hasOPN2=disCont[i].dispatch->chipClock;
CHIP_VOL(2,1.6);
willExport[i]=true;
writeDACSamples=true;
} else if (!(hasOPN2&0x40000000)) {
isSecond[i]=true;
CHIP_VOL_SECOND(2,1.6);
willExport[i]=true;
hasOPN2|=0x40000000;
howManyChips++;
}
break;
case DIV_SYSTEM_YM2151:
if (!hasOPM) {
hasOPM=disCont[i].dispatch->chipClock;
CHIP_VOL(3,1.0);
willExport[i]=true;
} else if (!(hasOPM&0x40000000)) {
isSecond[i]=true;
CHIP_VOL_SECOND(3,1.0);
willExport[i]=true;
hasOPM|=0x40000000;
howManyChips++;
}
break;
case DIV_SYSTEM_YM2203:
case DIV_SYSTEM_YM2203_EXT:
if (!hasOPN) {
hasOPN=disCont[i].dispatch->chipClock;
willExport[i]=true;
CHIP_VOL(6,1.0);
CHIP_VOL(0x86,1.7);
} else if (!(hasOPN&0x40000000)) {
isSecond[i]=true;
willExport[i]=true;
CHIP_VOL_SECOND(6,1.0);
CHIP_VOL_SECOND(0x86,1.7);
hasOPN|=0x40000000;
howManyChips++;
}
break;
case DIV_SYSTEM_YM2608:
case DIV_SYSTEM_YM2608_EXT:
if (!hasOPNA) {
hasOPNA=disCont[i].dispatch->chipClock;
CHIP_VOL(7,1.0);
CHIP_VOL(0x87,1.3);
willExport[i]=true;
writeADPCM_OPNA[0]=disCont[i].dispatch;
} else if (!(hasOPNA&0x40000000)) {
isSecond[i]=true;
CHIP_VOL_SECOND(7,1.0);
CHIP_VOL_SECOND(0x87,1.3);
willExport[i]=true;
writeADPCM_OPNA[1]=disCont[i].dispatch;
hasOPNA|=0x40000000;
howManyChips++;
}
break;
case DIV_SYSTEM_OPLL:
case DIV_SYSTEM_OPLL_DRUMS:
case DIV_SYSTEM_VRC7:
if (!hasOPLL) {
hasOPLL=disCont[i].dispatch->chipClock;
CHIP_VOL(1,3.2);
willExport[i]=true;
} else if (!(hasOPLL&0x40000000)) {
isSecond[i]=true;
CHIP_VOL_SECOND(1,3.2);
willExport[i]=true;
hasOPLL|=0x40000000;
howManyChips++;
}
break;
case DIV_SYSTEM_FDS:
if (!hasNES) {
hasNES=0x80000000|disCont[i].dispatch->chipClock;
willExport[i]=true;
} else if (!(hasNES&0x80000000)) {
hasNES|=0x80000000;
willExport[i]=true;
} else if (!(hasNES&0x40000000)) {
isSecond[i]=true;
willExport[i]=true;
hasNES|=0xc0000000;
howManyChips++;
}
break;
case DIV_SYSTEM_POKEY:
if (!hasPOKEY) {
hasPOKEY=disCont[i].dispatch->chipClock;
CHIP_VOL(30,0.8);
willExport[i]=true;
} else if (!(hasPOKEY&0x40000000)) {
isSecond[i]=true;
CHIP_VOL_SECOND(30,0.8);
willExport[i]=true;
hasPOKEY|=0x40000000;
howManyChips++;
}
break;
case DIV_SYSTEM_LYNX:
if (!hasLynx) {
hasLynx=disCont[i].dispatch->chipClock;
willExport[i]=true;
} else if (!(hasLynx&0x40000000)) {
isSecond[i]=true;
willExport[i]=true;
hasLynx|=0x40000000;
howManyChips++;
}
break;
case DIV_SYSTEM_QSOUND:
if (!hasQSound) {
// could set chipClock to 4000000 here for compatibility
// However I think it it not necessary because old VGM players will still
// not be able to handle the 64kb sample bank trick
hasQSound=disCont[i].dispatch->chipClock;
CHIP_VOL(31,1.0);
willExport[i]=true;
writeQSound[0]=disCont[i].dispatch;
} else if (!(hasQSound&0x40000000)) {
isSecond[i]=true;
CHIP_VOL_SECOND(31,1.0);
willExport[i]=false;
writeQSound[1]=disCont[i].dispatch;
addWarning("dual QSound is not supported by the VGM format");
}
break;
case DIV_SYSTEM_SWAN:
if (!hasSwan) {
hasSwan=disCont[i].dispatch->chipClock;
CHIP_VOL(33,1.0);
willExport[i]=true;
// funny enough, VGM doesn't have support for WSC's sound DMA by design
// so DAC stream it goes
// since WS has the same PCM format as YM2612 DAC, I can just reuse this flag
writeDACSamples=true;
} else if (!(hasSwan&0x40000000)) {
isSecond[i]=true;
CHIP_VOL_SECOND(33,1.0);
willExport[i]=true;
hasSwan|=0x40000000;
howManyChips++;
}
break;
case DIV_SYSTEM_ES5506:
if (!hasES5505) {
// VGM identifies ES5506 if highest bit sets, otherwise ES5505
hasES5505=0x80000000|disCont[i].dispatch->chipClock;
willExport[i]=true;
writeES5506[0]=disCont[i].dispatch;
} else if (!(hasES5505&0x40000000)) {
isSecond[i]=true;
willExport[i]=false;
hasES5505|=0xc0000000;
writeES5506[1]=disCont[i].dispatch;
howManyChips++;
}
break;
case DIV_SYSTEM_VBOY:
if (!hasVSU) {
hasVSU=disCont[i].dispatch->chipClock;
CHIP_VOL(34,0.72);
willExport[i]=true;
} else if (!(hasVSU&0x40000000)) {
isSecond[i]=true;
CHIP_VOL_SECOND(34,0.72);
willExport[i]=true;
hasVSU|=0x40000000;
howManyChips++;
}
break;
case DIV_SYSTEM_OPL:
case DIV_SYSTEM_OPL_DRUMS:
if (!hasOPL) {
hasOPL=disCont[i].dispatch->chipClock;
CHIP_VOL(9,1.0);
willExport[i]=true;
} else if (!(hasOPL&0x40000000)) {
isSecond[i]=true;
CHIP_VOL_SECOND(9,1.0);
willExport[i]=true;
hasOPL|=0x40000000;
howManyChips++;
}
break;
case DIV_SYSTEM_Y8950:
case DIV_SYSTEM_Y8950_DRUMS:
if (!hasY8950) {
hasY8950=disCont[i].dispatch->chipClock;
CHIP_VOL(11,1.0);
willExport[i]=true;
writeADPCM_Y8950[0]=disCont[i].dispatch;
} else if (!(hasY8950&0x40000000)) {
isSecond[i]=true;
CHIP_VOL_SECOND(11,1.0);
willExport[i]=true;
writeADPCM_Y8950[1]=disCont[i].dispatch;
hasY8950|=0x40000000;
howManyChips++;
}
break;
case DIV_SYSTEM_OPL2:
case DIV_SYSTEM_OPL2_DRUMS:
if (!hasOPL2) {
hasOPL2=disCont[i].dispatch->chipClock;
CHIP_VOL(10,1.0);
willExport[i]=true;
} else if (!(hasOPL2&0x40000000)) {
isSecond[i]=true;
CHIP_VOL_SECOND(10,1.0);
willExport[i]=true;
hasOPL2|=0x40000000;
howManyChips++;
}
break;
case DIV_SYSTEM_OPL3:
case DIV_SYSTEM_OPL3_DRUMS:
if (!hasOPL3) {
hasOPL3=disCont[i].dispatch->chipClock;
CHIP_VOL(12,1.0);
willExport[i]=true;
} else if (!(hasOPL3&0x40000000)) {
isSecond[i]=true;
CHIP_VOL_SECOND(12,1.0);
willExport[i]=true;
hasOPL3|=0x40000000;
howManyChips++;
}
break;
case DIV_SYSTEM_SCC:
case DIV_SYSTEM_SCC_PLUS:
if (!hasK051649) {
hasK051649=disCont[i].dispatch->chipClock;
if (song.system[i]==DIV_SYSTEM_SCC_PLUS) {
hasK051649|=0x80000000;
}
CHIP_VOL(25,1.0);
willExport[i]=true;
} else if (!(hasK051649&0x40000000)) {
isSecond[i]=true;
CHIP_VOL_SECOND(25,1.0);
willExport[i]=true;
hasK051649|=0x40000000;
if (song.system[i]==DIV_SYSTEM_SCC_PLUS) {
hasK051649|=0x80000000;
}
howManyChips++;
}
break;
case DIV_SYSTEM_YMZ280B:
if (!hasZ280) {
hasZ280=disCont[i].dispatch->chipClock;
CHIP_VOL(15,0.72);
willExport[i]=true;
writeZ280[0]=disCont[i].dispatch;
} else if (!(hasZ280&0x40000000)) {
isSecond[i]=true;
CHIP_VOL_SECOND(15,0.72);
willExport[i]=true;
writeZ280[1]=disCont[i].dispatch;
hasZ280|=0x40000000;
howManyChips++;
}
break;
case DIV_SYSTEM_RF5C68:
// here's the dumb part: VGM thinks RF5C68 and RF5C164 are different
// chips even though the only difference is the output resolution
// these system types are currently handled by reusing isSecond flag
// also this system is not dual-able
if (song.systemFlags[i].getInt("chipType",0)==1) {
if (!hasRFC1) {
hasRFC1=disCont[i].dispatch->chipClock;
isSecond[i]=true;
CHIP_VOL(16,0.8);
willExport[i]=true;
writeRF5C68[1]=disCont[i].dispatch;
}
} else if (!hasRFC) {
hasRFC=disCont[i].dispatch->chipClock;
CHIP_VOL(5,1.1);
willExport[i]=true;
writeRF5C68[0]=disCont[i].dispatch;
}
break;
case DIV_SYSTEM_MSM6258:
if (!hasOKIM6258) {
hasOKIM6258=disCont[i].dispatch->chipClock;
CHIP_VOL(23,0.65);
willExport[i]=true;
writeVOXSamples=true;
} else if (!(hasOKIM6258&0x40000000)) {
isSecond[i]=true;
CHIP_VOL_SECOND(23,0.65);
willExport[i]=true;
writeVOXSamples=true;
hasOKIM6258|=0x40000000;
howManyChips++;
}
break;
case DIV_SYSTEM_MSM6295:
if (!hasOKIM6295) {
hasOKIM6295=disCont[i].dispatch->chipClock;
CHIP_VOL(24,1.0);
willExport[i]=true;
writeMSM6295[0]=disCont[i].dispatch;
} else if (!(hasOKIM6295&0x40000000)) {
isSecond[i]=true;
CHIP_VOL_SECOND(24,1.0);
willExport[i]=true;
writeMSM6295[1]=disCont[i].dispatch;
hasOKIM6295|=0x40000000;
howManyChips++;
}
break;
case DIV_SYSTEM_GA20:
if (!hasGA20) {
hasGA20=disCont[i].dispatch->chipClock;
CHIP_VOL(40,0.4);
willExport[i]=true;
writeGA20[0]=disCont[i].dispatch;
} else if (!(hasGA20&0x40000000)) {
isSecond[i]=true;
CHIP_VOL_SECOND(40,0.4);
willExport[i]=true;
writeGA20[1]=disCont[i].dispatch;
hasGA20|=0x40000000;
howManyChips++;
}
break;
case DIV_SYSTEM_K053260:
if (!hasK053260) {
hasK053260=disCont[i].dispatch->chipClock;
CHIP_VOL(29,0.4);
willExport[i]=true;
writeK053260[0]=disCont[i].dispatch;
} else if (!(hasK053260&0x40000000)) {
isSecond[i]=true;
CHIP_VOL_SECOND(29,0.4);
willExport[i]=true;
writeK053260[1]=disCont[i].dispatch;
hasK053260|=0x40000000;
howManyChips++;
}
break;
case DIV_SYSTEM_T6W28:
if (!hasSN) {
hasSN=0xc0000000|disCont[i].dispatch->chipClock;
CHIP_VOL(0,2.0);
snNoiseConfig=3;
snNoiseSize=15;
willExport[i]=true;
}
break;
case DIV_SYSTEM_C140:
if (!hasC140) {
// ?!?!?!
hasC140=disCont[i].dispatch->rate/2;
CHIP_VOL(40,1.0);
willExport[i]=true;
writeC140[0]=disCont[i].dispatch;
c140Type=(song.systemFlags[i].getInt("bankType",0)==1)?1:0;
} else if (!(hasC140&0x40000000)) {
isSecond[i]=true;
CHIP_VOL_SECOND(40,1.0);
willExport[i]=true;
writeC140[1]=disCont[i].dispatch;
hasC140|=0x40000000;
howManyChips++;
}
break;
case DIV_SYSTEM_C219:
if (!hasC140) {
// ?!?!?!
hasC140=disCont[i].dispatch->rate/2;
CHIP_VOL(40,1.0);
willExport[i]=true;
writeC219[0]=disCont[i].dispatch;
c140Type=2;
} else if (!(hasC140&0x40000000)) {
isSecond[i]=true;
CHIP_VOL_SECOND(40,1.0);
willExport[i]=true;
writeC219[1]=disCont[i].dispatch;
hasC140|=0x40000000;
c140Type=2;
howManyChips++;
}
break;
default:
break;
}
if (willExport[i]) {
disCont[i].dispatch->toggleRegisterDump(true);
}
}
// variable set but not used?
logV("howManyChips: %d",howManyChips);
// write chips and stuff
w->writeI(hasSN);
w->writeI(hasOPLL);
w->writeI(0);
w->writeI(0); // length. will be written later
w->writeI(0); // loop. will be written later
w->writeI(0); // loop length. why is this necessary?
w->writeI(0); // tick rate
w->writeS(snNoiseConfig);
w->writeC(snNoiseSize);
if (version>=0x151) {
w->writeC(snFlags);
} else {
w->writeC(0);
}
w->writeI(hasOPN2);
w->writeI(hasOPM);
w->writeI(0); // data pointer. will be written later
if (version>=0x151) {
w->writeI(hasSegaPCM);
w->writeI(segaPCMOffset);
w->writeI(hasRFC);
w->writeI(hasOPN);
w->writeI(hasOPNA);
w->writeI(hasOPNB);
w->writeI(hasOPL2);
w->writeI(hasOPL);
w->writeI(hasY8950);
w->writeI(hasOPL3);
w->writeI(hasOPL4);
w->writeI(hasOPX);
w->writeI(hasZ280);
w->writeI(hasRFC1);
w->writeI(hasPWM);
w->writeI(hasAY);
w->writeC(ayConfig);
w->writeC(ayFlags);
w->writeC(ayFlags); // OPN
w->writeC(ayFlags); // OPNA
} else {
w->writeI(0);
w->writeI(0);
w->writeI(0);
w->writeI(0);
w->writeI(0);
w->writeI(0);
w->writeI(0);
w->writeI(0);
w->writeI(0);
w->writeI(0);
w->writeI(0);
w->writeI(0);
w->writeI(0);
w->writeI(0);
w->writeI(0);
w->writeI(0);
w->writeC(0);
w->writeC(0);
w->writeC(0); // OPN
w->writeC(0); // OPNA
}
if (version>=0x160) { // global volume
double abnormalVol=song.masterVol*(double)chipVolSum/(256.0*MAX(1,chipAccounting));
int calcVolume=32.0*(log(abnormalVol)/log(2.0));
if (calcVolume<-63) calcVolume=-63;
if (calcVolume>192) calcVolume=192;
w->writeC(calcVolume&0xff); // volume
} else {
w->writeC(0); // volume
}
// currently not used but is part of 1.60
w->writeC(0); // reserved
w->writeC(0); // loop count
// 1.51
w->writeC(0); // loop modifier
if (version>=0x161) {
w->writeI(hasGB);
w->writeI(hasNES);
w->writeI(hasMultiPCM);
w->writeI(hasuPD7759);
w->writeI(hasOKIM6258);
w->writeC(hasOKIM6258?10:0); // flags
w->writeC(0); // K flags
w->writeC(c140Type); // C140 chip type
w->writeC(0); // reserved
w->writeI(hasOKIM6295);
w->writeI(hasK051649);
w->writeI(hasK054539);
w->writeI(hasPCE);
w->writeI(hasC140);
w->writeI(hasK053260);
w->writeI(hasPOKEY);
w->writeI(hasQSound);
} else {
w->writeI(0);
w->writeI(0);
w->writeI(0);
w->writeI(0);
w->writeI(0);
w->writeC(0); // flags
w->writeC(0); // K flags
w->writeC(0); // C140 chip type
w->writeC(0); // reserved
w->writeI(0);
w->writeI(0);
w->writeI(0);
w->writeI(0);
w->writeI(0);
w->writeI(0);
w->writeI(0);
w->writeI(0);
}
if (version>=0x171) {
w->writeI(hasSCSP);
} else {
w->writeI(0);
}
// 1.70
w->writeI(0); // extra header
// 1.71
if (version>=0x171) {
w->writeI(hasSwan);
w->writeI(hasVSU);
w->writeI(hasSAA);
w->writeI(hasES5503);
w->writeI(hasES5505);
w->writeC(0); // 5503 chans
w->writeC(hasES5505?1:0); // 5505 chans
w->writeC(0); // C352 clock divider
w->writeC(0); // reserved
w->writeI(hasX1);
w->writeI(hasC352);
w->writeI(hasGA20);
w->writeI(version>=0x172?hasLynx:0); //Mikey introduced in 1.72
} else {
w->writeI(0);
w->writeI(0);
w->writeI(0);
w->writeI(0);
w->writeI(0);
w->writeC(0); // 5503 chans
w->writeC(0); // 5505 chans
w->writeC(0); // C352 clock divider
w->writeC(0); // reserved
w->writeI(0);
w->writeI(0);
w->writeI(0);
w->writeI(0);
}
for (int i=0; i<6; i++) { // reserved
w->writeI(0);
}
unsigned int exHeaderOff=w->tell();
if (version>=0x170) {
logD("writing extended header...");
w->writeI(12);
w->writeI(0);
w->writeI(4);
// write chip volumes
logD("writing chip volumes (%ld)...",chipVol.size());
w->writeC(chipVol.size());
for (unsigned int& i: chipVol) {
logV("- %.8x",i);
w->writeI(i);
}
}
unsigned int songOff=w->tell();
// initialize sample offsets
memset(sampleOff8,0,256*sizeof(unsigned int));
memset(sampleLen8,0,256*sizeof(unsigned int));
memset(sampleOffSegaPCM,0,256*sizeof(unsigned int));
// write samples
unsigned int sampleSeek=0;
for (int i=0; i<song.sampleLen; i++) {
DivSample* sample=song.sample[i];
logI("setting seek to %d",sampleSeek);
sampleOff8[i]=sampleSeek;
sampleLen8[i]=sample->length8;
sampleSeek+=sample->length8;
}
if (writeDACSamples && !directStream) for (int i=0; i<song.sampleLen; i++) {
DivSample* sample=song.sample[i];
w->writeC(0x67);
w->writeC(0x66);
w->writeC(0);
w->writeI(sample->length8);
for (unsigned int j=0; j<sample->length8; j++) {
w->writeC((unsigned char)sample->data8[j]+0x80);
}
}
if (writeNESSamples && !directStream) for (int i=0; i<song.sampleLen; i++) {
DivSample* sample=song.sample[i];
w->writeC(0x67);
w->writeC(0x66);
w->writeC(7);
w->writeI(sample->length8);
for (unsigned int j=0; j<sample->length8; j++) {
w->writeC(((unsigned char)sample->data8[j]+0x80)>>1);
}
bankOffsetNESCurrent+=sample->length8;
}
if (writePCESamples && !directStream) for (int i=0; i<song.sampleLen; i++) {
DivSample* sample=song.sample[i];
w->writeC(0x67);
w->writeC(0x66);
w->writeC(5);
w->writeI(sample->length8);
for (unsigned int j=0; j<sample->length8; j++) {
w->writeC(((unsigned char)sample->data8[j]+0x80)>>3);
}
}
if (writeVOXSamples && !directStream) for (int i=0; i<song.sampleLen; i++) {
DivSample* sample=song.sample[i];
w->writeC(0x67);
w->writeC(0x66);
w->writeC(4);
w->writeI(sample->lengthVOX);
for (unsigned int j=0; j<sample->lengthVOX; j++) {
unsigned char actualData=(sample->dataVOX[j]>>4)|(sample->dataVOX[j]<<4);
w->writeC(actualData);
}
}
for (int i=0; i<2; i++) {
// SegaPCM
if (writeSegaPCM[i]!=NULL && writeSegaPCM[i]->getSampleMemUsage(0)>0) {
w->writeC(0x67);
w->writeC(0x66);
w->writeC(0x80);
w->writeI((writeSegaPCM[i]->getSampleMemUsage(0)+8)|(i*0x80000000));
w->writeI(writeSegaPCM[i]->getSampleMemCapacity(0));
w->writeI(0);
w->write(writeSegaPCM[i]->getSampleMem(0),writeSegaPCM[i]->getSampleMemUsage(0));
}
// ADPCM (OPNA)
if (writeADPCM_OPNA[i]!=NULL && writeADPCM_OPNA[i]->getSampleMemUsage(0)>0) {
w->writeC(0x67);
w->writeC(0x66);
w->writeC(0x81);
w->writeI((writeADPCM_OPNA[i]->getSampleMemUsage(0)+8)|(i*0x80000000));
w->writeI(writeADPCM_OPNA[i]->getSampleMemCapacity(0));
w->writeI(0);
w->write(writeADPCM_OPNA[i]->getSampleMem(0),writeADPCM_OPNA[i]->getSampleMemUsage(0));
}
// ADPCM-A (OPNB)
if (writeADPCM_OPNB[i]!=NULL && writeADPCM_OPNB[i]->getSampleMemUsage(0)>0) {
w->writeC(0x67);
w->writeC(0x66);
w->writeC(0x82);
w->writeI((writeADPCM_OPNB[i]->getSampleMemUsage(0)+8)|(i*0x80000000));
w->writeI(writeADPCM_OPNB[i]->getSampleMemCapacity(0));
w->writeI(0);
w->write(writeADPCM_OPNB[i]->getSampleMem(0),writeADPCM_OPNB[i]->getSampleMemUsage(0));
}
// ADPCM-B (OPNB)
if (writeADPCM_OPNB[i]!=NULL && writeADPCM_OPNB[i]->getSampleMemUsage(1)>0) {
w->writeC(0x67);
w->writeC(0x66);
w->writeC(0x83);
w->writeI((writeADPCM_OPNB[i]->getSampleMemUsage(1)+8)|(i*0x80000000));
w->writeI(writeADPCM_OPNB[i]->getSampleMemCapacity(1));
w->writeI(0);
w->write(writeADPCM_OPNB[i]->getSampleMem(1),writeADPCM_OPNB[i]->getSampleMemUsage(1));
}
// ADPCM (Y8950)
if (writeADPCM_Y8950[i]!=NULL && writeADPCM_Y8950[i]->getSampleMemUsage(0)>0) {
w->writeC(0x67);
w->writeC(0x66);
w->writeC(0x88);
w->writeI((writeADPCM_Y8950[i]->getSampleMemUsage(0)+8)|(i*0x80000000));
w->writeI(writeADPCM_Y8950[i]->getSampleMemCapacity(0));
w->writeI(0);
w->write(writeADPCM_Y8950[i]->getSampleMem(0),writeADPCM_Y8950[i]->getSampleMemUsage(0));
}
if (writeQSound[i]!=NULL && writeQSound[i]->getSampleMemUsage()>0) {
unsigned int blockSize=(writeQSound[i]->getSampleMemUsage()+0xffff)&(~0xffff);
if (blockSize > 0x1000000) {
blockSize = 0x1000000;
}
w->writeC(0x67);
w->writeC(0x66);
w->writeC(0x8F);
w->writeI((blockSize+8)|(i*0x80000000));
w->writeI(writeQSound[i]->getSampleMemCapacity());
w->writeI(0);
w->write(writeQSound[i]->getSampleMem(),blockSize);
}
if (writeX1010[i]!=NULL && writeX1010[i]->getSampleMemUsage()>0) {
w->writeC(0x67);
w->writeC(0x66);
w->writeC(0x91);
w->writeI((writeX1010[i]->getSampleMemUsage()+8)|(i*0x80000000));
w->writeI(writeX1010[i]->getSampleMemCapacity());
w->writeI(0);
w->write(writeX1010[i]->getSampleMem(),writeX1010[i]->getSampleMemUsage());
}
if (writeZ280[i]!=NULL && writeZ280[i]->getSampleMemUsage()>0) {
// In VGM, YMZ280B's 16-bit PCM has an endianness swapped
// which have been fixed in the upstream MAME since 2013
// in order to get Konami FireBeat working
// The reason given for VGM not applying this change was
// "It matches OPL4 and MAME probably did an endianness optimization"
size_t sampleMemLen=writeZ280[i]->getSampleMemUsage();
unsigned char* sampleMem=new unsigned char[sampleMemLen];
memcpy(sampleMem,writeZ280[i]->getSampleMem(),sampleMemLen);
w->writeC(0x67);
w->writeC(0x66);
w->writeC(0x86);
w->writeI((writeZ280[i]->getSampleMemUsage()+8)|(i*0x80000000));
w->writeI(writeZ280[i]->getSampleMemCapacity());
w->writeI(0);
w->write(sampleMem,sampleMemLen);
delete[] sampleMem;
}
}
for (int i=0; i<2; i++) {
if (writeRF5C68[i]!=NULL && writeRF5C68[i]->getSampleMemUsage()>0) {
w->writeC(0x67);
w->writeC(0x66);
w->writeC(0xc0+i);
w->writeI(writeRF5C68[i]->getSampleMemUsage()+2);
w->writeS(0);
w->write(writeRF5C68[i]->getSampleMem(),writeRF5C68[i]->getSampleMemUsage());
}
if (writeMSM6295[i]!=NULL && writeMSM6295[i]->getSampleMemUsage()>0) {
w->writeC(0x67);
w->writeC(0x66);
w->writeC(0x8b);
w->writeI((writeMSM6295[i]->getSampleMemUsage()+8)|(i*0x80000000));
w->writeI(writeMSM6295[i]->getSampleMemCapacity());
w->writeI(0);
w->write(writeMSM6295[i]->getSampleMem(),writeMSM6295[i]->getSampleMemUsage());
}
if (writeGA20[i]!=NULL && writeGA20[i]->getSampleMemUsage()>0) {
w->writeC(0x67);
w->writeC(0x66);
w->writeC(0x93);
w->writeI((writeGA20[i]->getSampleMemUsage()+8)|(i*0x80000000));
w->writeI(writeGA20[i]->getSampleMemCapacity());
w->writeI(0);
w->write(writeGA20[i]->getSampleMem(),writeGA20[i]->getSampleMemUsage());
}
if (writeK053260[i]!=NULL && writeK053260[i]->getSampleMemUsage()>0) {
w->writeC(0x67);
w->writeC(0x66);
w->writeC(0x8e);
w->writeI((writeK053260[i]->getSampleMemUsage()+8)|(i*0x80000000));
w->writeI(writeK053260[i]->getSampleMemCapacity());
w->writeI(0);
w->write(writeK053260[i]->getSampleMem(),writeK053260[i]->getSampleMemUsage());
}
if (writeNES[i]!=NULL && writeNES[i]->getSampleMemUsage()>0) {
size_t howMuchWillBeWritten=writeNES[i]->getSampleMemUsage();
w->writeC(0x67);
w->writeC(0x66);
w->writeC(7);
w->writeI(howMuchWillBeWritten);
w->write(writeNES[i]->getSampleMem(),howMuchWillBeWritten);
bankOffsetNES[i]=bankOffsetNESCurrent;
bankOffset[writeNESIndex[i]]=bankOffsetNES[i];
bankOffsetNESCurrent+=howMuchWillBeWritten;
// force the first bank
w->writeC(0x68);
w->writeC(0x6c);
w->writeC(0x07|(i?0x80:0x00));
w->writeC(bankOffsetNES[i]&0xff);
w->writeC((bankOffsetNES[i]>>8)&0xff);
w->writeC((bankOffsetNES[i]>>16)&0xff);
w->writeC(0x00);
w->writeC(0xc0);
w->writeC(0x00);
w->writeC(0x00);
w->writeC(0x40);
w->writeC(0x00);
}
}
// TODO
for (int i=0; i<2; i++) {
if (writeES5506[i]!=NULL && writeES5506[i]->getSampleMemUsage()>0) {
w->writeC(0x67);
w->writeC(0x66);
w->writeC(0x8F);
w->writeI((writeES5506[i]->getSampleMemUsage()+8)|(i*0x80000000));
w->writeI(writeES5506[i]->getSampleMemCapacity());
w->writeI(0);
w->write(writeES5506[i]->getSampleMem(),writeES5506[i]->getSampleMemUsage());
}
if (writeC140[i]!=NULL && writeC140[i]->getSampleMemUsage()>0) {
w->writeC(0x67);
w->writeC(0x66);
w->writeC(0x8d);
unsigned short* mem=(unsigned short*)writeC140[i]->getSampleMem();
size_t memLen=writeC140[i]->getSampleMemUsage()>>1;
w->writeI((memLen+8)|(i*0x80000000));
w->writeI(writeC140[i]->getSampleMemCapacity());
w->writeI(0);
for (size_t i=0; i<memLen; i++) {
w->writeC(mem[i]>>8);
}
}
if (writeC219[i]!=NULL && writeC219[i]->getSampleMemUsage()>0) {
w->writeC(0x67);
w->writeC(0x66);
w->writeC(0x8d);
unsigned char* mem=(unsigned char*)writeC219[i]->getSampleMem();
size_t memLen=writeC219[i]->getSampleMemUsage();
w->writeI((memLen+8)|(i*0x80000000));
w->writeI(writeC219[i]->getSampleMemCapacity());
w->writeI(0);
for (size_t i=0; i<memLen; i++) {
w->writeC(mem[i]);
}
}
}
// initialize streams
int streamID=0;
if (!directStream) {
for (int i=0; i<song.systemLen; i++) {
if (!willExport[i]) continue;
streamIDs[i]=streamID;
switch (song.system[i]) {
case DIV_SYSTEM_YM2612:
case DIV_SYSTEM_YM2612_EXT:
case DIV_SYSTEM_YM2612_DUALPCM:
case DIV_SYSTEM_YM2612_DUALPCM_EXT:
w->writeC(0x90);
w->writeC(streamID);
w->writeC(0x02);
w->writeC(0); // port
w->writeC(0x2a); // DAC
w->writeC(0x91);
w->writeC(streamID);
w->writeC(0);
w->writeC(1);
w->writeC(0);
w->writeC(0x92);
w->writeC(streamID);
w->writeI(32000); // default
streamID++;
break;
case DIV_SYSTEM_NES:
w->writeC(0x90);
w->writeC(streamID);
w->writeC(20);
w->writeC(0); // port
w->writeC(0x11); // DAC
w->writeC(0x91);
w->writeC(streamID);
w->writeC(7);
w->writeC(1);
w->writeC(0);
w->writeC(0x92);
w->writeC(streamID);
w->writeI(32000); // default
streamID++;
break;
case DIV_SYSTEM_PCE:
for (int j=0; j<6; j++) {
w->writeC(0x90);
w->writeC(streamID);
w->writeC(27);
w->writeC(j); // port
w->writeC(0x06); // select+DAC
w->writeC(0x91);
w->writeC(streamID);
w->writeC(5);
w->writeC(1);
w->writeC(0);
w->writeC(0x92);
w->writeC(streamID);
w->writeI(16000); // default
streamID++;
}
break;
case DIV_SYSTEM_SWAN:
w->writeC(0x90);
w->writeC(streamID);
w->writeC(isSecond[i]?0xa1:0x21);
w->writeC(0); // port
w->writeC(0x09); // DAC
w->writeC(0x91);
w->writeC(streamID);
w->writeC(0);
w->writeC(1);
w->writeC(0);
w->writeC(0x92);
w->writeC(streamID);
w->writeI(24000); // default
streamID++;
break;
case DIV_SYSTEM_MSM6258:
w->writeC(0x90);
w->writeC(streamID);
w->writeC(isSecond[i]?0x97:0x17);
w->writeC(0); // port
w->writeC(1); // data input
w->writeC(0x91);
w->writeC(streamID);
w->writeC(4);
w->writeC(1);
w->writeC(0);
streamID++;
break;
default:
break;
}
}
}
// write song data
playSub(false);
size_t tickCount=0;
bool writeLoop=false;
bool alreadyWroteLoop=false;
int ord=-1;
int exportChans=0;
for (int i=0; i<chans; i++) {
if (!willExport[dispatchOfChan[i]]) continue;
exportChans++;
chan[i].wentThroughNote=false;
chan[i].goneThroughNote=false;
}
while (!done) {
if (loopPos==-1) {
if (loopOrder==curOrder && loopRow==curRow) {
if ((ticks-((tempoAccum+curSubSong->virtualTempoN)/curSubSong->virtualTempoD))<=0) {
writeLoop=true;
}
}
}
songTick++;
tickPos.push_back(w->tell());
tickSample.push_back(tickCount);
if (nextTick(false,true)) {
if (trailing) beenOneLoopAlready=true;
trailing=true;
if (!loop) countDown=0;
for (int i=0; i<chans; i++) {
if (!willExport[dispatchOfChan[i]]) continue;
chan[i].wentThroughNote=false;
}
}
if (trailing) {
switch (trailingTicks) {
case -1: { // automatic
bool stillHaveTo=false;
for (int i=0; i<chans; i++) {
if (!willExport[dispatchOfChan[i]]) continue;
if (!chan[i].goneThroughNote) continue;
if (!chan[i].wentThroughNote) {
stillHaveTo=true;
break;
}
}
if (!stillHaveTo) countDown=0;
break;
}
case -2: // one loop
break;
default: // custom
countDown--;
break;
}
if (song.loopModality!=2) countDown=0;
if (countDown>0 && !beenOneLoopAlready) {
loopTickSong++;
}
}
if (countDown<=0 || !playing || beenOneLoopAlready) {
done=true;
if (!loop) {
for (int i=0; i<song.systemLen; i++) {
disCont[i].dispatch->getRegisterWrites().clear();
}
break;
}
// stop all streams
if (!directStream) {
for (int i=0; i<streamID; i++) {
w->writeC(0x94);
w->writeC(i);
loopSample[i]=-1;
}
}
if (!playing) {
writeLoop=false;
loopPos=-1;
}
} else {
// check for pattern change
if (prevOrder!=ord) {
logI("registering order change %d on %d",prevOrder, prevRow);
ord=prevOrder;
if (patternHints) {
w->writeC(0x67);
w->writeC(0x66);
w->writeC(0xfe);
w->writeI(3+exportChans);
w->writeC(0x01);
w->writeC(prevOrder);
w->writeC(prevRow);
for (int i=0; i<chans; i++) {
if (!willExport[dispatchOfChan[i]]) continue;
w->writeC(curSubSong->orders.ord[i][prevOrder]);
}
}
}
}
// get register dumps
for (int i=0; i<song.systemLen; i++) {
std::vector<DivRegWrite>& writes=disCont[i].dispatch->getRegisterWrites();
for (DivRegWrite& j: writes) {
performVGMWrite(w,song.system[i],j,streamIDs[i],loopTimer,loopFreq,loopSample,sampleDir,isSecond[i],pendingFreq,playingSample,setPos,sampleOff8,sampleLen8,bankOffset[i],directStream);
writeCount++;
}
writes.clear();
}
// check whether we need to loop
int totalWait=cycles>>MASTER_CLOCK_PREC;
if (directStream) {
// render stream of all chips
for (int i=0; i<song.systemLen; i++) {
disCont[i].dispatch->fillStream(delayedWrites[i],44100,totalWait);
for (DivDelayedWrite& j: delayedWrites[i]) {
sortedWrites.push_back(std::pair<int,DivDelayedWrite>(i,j));
}
delayedWrites[i].clear();
}
if (!sortedWrites.empty()) {
// sort if more than one chip
if (song.systemLen>1) {
std::sort(sortedWrites.begin(),sortedWrites.end(),[](const std::pair<int,DivDelayedWrite>& a, const std::pair<int,DivDelayedWrite>& b) -> bool {
return a.second.time<b.second.time;
});
}
// write it out
int lastOne=0;
for (std::pair<int,DivDelayedWrite>& i: sortedWrites) {
if (i.second.time>lastOne) {
// write delay
int delay=i.second.time-lastOne;
if (delay>16) {
w->writeC(0x61);
w->writeS(delay);
} else if (delay>0) {
w->writeC(0x70+delay-1);
}
lastOne=i.second.time;
}
// write write
performVGMWrite(w,song.system[i.first],i.second.write,streamIDs[i.first],loopTimer,loopFreq,loopSample,sampleDir,isSecond[i.first],pendingFreq,playingSample,setPos,sampleOff8,sampleLen8,bankOffset[i.first],directStream);
// handle global Furnace commands
writeCount++;
}
sortedWrites.clear();
totalWait-=lastOne;
tickCount+=lastOne;
}
} else {
for (int i=0; i<streamID; i++) {
if (loopSample[i]>=0) {
loopTimer[i]-=(loopFreq[i]/44100.0)*(double)totalWait;
}
}
bool haveNegatives=false;
for (int i=0; i<streamID; i++) {
if (loopSample[i]>=0) {
if (loopTimer[i]<0) {
haveNegatives=true;
}
}
}
while (haveNegatives) {
// finish all negatives
int nextToTouch=-1;
for (int i=0; i<streamID; i++) {
if (loopSample[i]>=0) {
if (loopTimer[i]<0) {
if (nextToTouch>=0) {
if (loopTimer[nextToTouch]>loopTimer[i]) nextToTouch=i;
} else {
nextToTouch=i;
}
}
}
}
if (nextToTouch>=0) {
double waitTime=totalWait+(loopTimer[nextToTouch]*(44100.0/MAX(1,loopFreq[nextToTouch])));
if (waitTime>0) {
w->writeC(0x61);
w->writeS(waitTime);
logV("wait is: %f",waitTime);
totalWait-=waitTime;
tickCount+=waitTime;
}
if (loopSample[nextToTouch]<song.sampleLen) {
DivSample* sample=song.sample[loopSample[nextToTouch]];
// insert loop
if (sample->getLoopStartPosition(DIV_SAMPLE_DEPTH_8BIT)<sample->getLoopEndPosition(DIV_SAMPLE_DEPTH_8BIT)) {
w->writeC(0x93);
w->writeC(nextToTouch);
w->writeI(sampleOff8[loopSample[nextToTouch]]+sample->getLoopStartPosition(DIV_SAMPLE_DEPTH_8BIT));
w->writeC(0x81);
w->writeI(sample->getLoopEndPosition(DIV_SAMPLE_DEPTH_8BIT)-sample->getLoopStartPosition(DIV_SAMPLE_DEPTH_8BIT));
}
}
loopSample[nextToTouch]=-1;
} else {
haveNegatives=false;
}
}
}
// write wait
if (totalWait>0) {
if (totalWait==735) {
w->writeC(0x62);
} else if (totalWait==882) {
w->writeC(0x63);
} else {
w->writeC(0x61);
w->writeS(totalWait);
}
tickCount+=totalWait;
}
if (writeLoop && !alreadyWroteLoop) {
writeLoop=false;
alreadyWroteLoop=true;
loopPos=w->tell();
loopTickSong=songTick;
}
}
// end of song
w->writeC(0x66);
got.rate=origRate;
for (int i=0; i<song.systemLen; i++) {
disCont[i].dispatch->toggleRegisterDump(false);
}
// write GD3 tag
gd3Off=w->tell();
w->write("Gd3 ",4);
w->writeI(0x100);
w->writeI(0); // length. will be written later
WString ws;
ws=utf8To16(song.name.c_str());
w->writeWString(ws,false); // name
ws=utf8To16(song.nameJ.c_str());
w->writeWString(ws,false); // japanese name
ws=utf8To16(song.category.c_str());
w->writeWString(ws,false); // game name
ws=utf8To16(song.categoryJ.c_str());
w->writeWString(ws,false); // japanese game name
ws=utf8To16(song.systemName.c_str());
w->writeWString(ws,false); // system name
ws=utf8To16(song.systemNameJ.c_str());
w->writeWString(ws,false); // japanese system name
ws=utf8To16(song.author.c_str());
w->writeWString(ws,false); // author name
ws=utf8To16(song.authorJ.c_str());
w->writeWString(ws,false); // japanese author name
w->writeS(0); // date
w->writeWString(L"Furnace (chiptune tracker)",false); // ripper
w->writeS(0); // notes
int gd3Len=w->tell()-gd3Off-12;
w->seek(gd3Off+8,SEEK_SET);
w->writeI(gd3Len);
// finish file
size_t len=w->size()-4;
w->seek(4,SEEK_SET);
w->writeI(len);
w->seek(0x14,SEEK_SET);
w->writeI(gd3Off-0x14);
w->writeI(tickCount);
if (loop) {
if (loopPos==-1) {
w->writeI(0);
w->writeI(0);
} else if (loopTickSong<0 || loopTickSong>(int)tickPos.size()) {
logW("loopTickSong out of range! %d>%d",loopTickSong,(int)tickPos.size());
w->writeI(0);
w->writeI(0);
} else {
int realLoopTick=tickSample[loopTickSong];
int realLoopPos=tickPos[loopTickSong];
logI("tickCount-realLoopTick: %d. realLoopPos: %d",tickCount-realLoopTick,realLoopPos);
w->writeI(realLoopPos-0x1c);
w->writeI(tickCount-realLoopTick);
}
} else {
w->writeI(0);
w->writeI(0);
}
if (mayWriteRate) {
w->writeI(round(curSubSong->hz));
}
w->seek(0x34,SEEK_SET);
w->writeI(songOff-0x34);
if (version>=0x170) {
w->seek(0xbc,SEEK_SET);
w->writeI(exHeaderOff-0xbc);
}
remainingLoops=-1;
playing=false;
freelance=false;
extValuePresent=false;
logI("%d register writes total.",writeCount);
BUSY_END;
return w;
}