furnace/extern/emu2413/emu2413.c
2024-04-07 14:26:27 -05:00

1526 lines
45 KiB
C

/**
* emu2413 v1.5.9
* https://github.com/digital-sound-antiques/emu2413
* Copyright (C) 2020 Mitsutaka Okazaki
*
* This source refers to the following documents. The author would like to thank all the authors who have
* contributed to the writing of them.
* - [YM2413 notes](http://www.smspower.org/Development/YM2413) by andete
* - ymf262.c by Jarek Burczynski
* - [VRC7 presets](https://siliconpr0n.org/archive/doku.php?id=vendor:yamaha:opl2#opll_vrc7_patch_format) by Nuke.YKT
* - YMF281B presets by Chabin
*/
#include "emu2413.h"
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#ifndef INLINE
#if defined(_MSC_VER)
#define INLINE __inline
#elif defined(__GNUC__)
#define INLINE __inline__
#else
#define INLINE inline
#endif
#endif
#define _PI_ 3.14159265358979323846264338327950288
#define OPLL_TONE_NUM 4
/* clang-format off */
static uint8_t default_inst[OPLL_TONE_NUM][(16 + 3) * 8] = {{
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, // 0: User
0x71,0x61,0x1e,0x17,0xd0,0x78,0x00,0x17, // 1: Violin
0x13,0x41,0x1a,0x0d,0xd8,0xf7,0x23,0x13, // 2: Guitar
0x13,0x01,0x99,0x00,0xf2,0xc4,0x21,0x23, // 3: Piano
0x11,0x61,0x0e,0x07,0x8d,0x64,0x70,0x27, // 4: Flute
0x32,0x21,0x1e,0x06,0xe1,0x76,0x01,0x28, // 5: Clarinet
0x31,0x22,0x16,0x05,0xe0,0x71,0x00,0x18, // 6: Oboe
0x21,0x61,0x1d,0x07,0x82,0x81,0x11,0x07, // 7: Trumpet
0x33,0x21,0x2d,0x13,0xb0,0x70,0x00,0x07, // 8: Organ
0x61,0x61,0x1b,0x06,0x64,0x65,0x10,0x17, // 9: Horn
0x41,0x61,0x0b,0x18,0x85,0xf0,0x81,0x07, // A: Synthesizer
0x33,0x01,0x83,0x11,0xea,0xef,0x10,0x04, // B: Harpsichord
0x17,0xc1,0x24,0x07,0xf8,0xf8,0x22,0x12, // C: Vibraphone
0x61,0x50,0x0c,0x05,0xd2,0xf5,0x40,0x42, // D: Synthsizer Bass
0x01,0x01,0x55,0x03,0xe9,0x90,0x03,0x02, // E: Acoustic Bass
0x41,0x41,0x89,0x03,0xf1,0xe4,0xc0,0x13, // F: Electric Guitar
0x01,0x01,0x18,0x0f,0xdf,0xf8,0x6a,0x6d, // R: Bass Drum (from VRC7)
0x01,0x01,0x00,0x00,0xc8,0xd8,0xa7,0x68, // R: High-Hat(M) / Snare Drum(C) (from VRC7)
0x05,0x01,0x00,0x00,0xf8,0xaa,0x59,0x55, // R: Tom-tom(M) / Top Cymbal(C) (from VRC7)
},{
/* VRC7 presets from Nuke.YKT */
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x03,0x21,0x05,0x06,0xe8,0x81,0x42,0x27,
0x13,0x41,0x14,0x0d,0xd8,0xf6,0x23,0x12,
0x11,0x11,0x08,0x08,0xfa,0xb2,0x20,0x12,
0x31,0x61,0x0c,0x07,0xa8,0x64,0x61,0x27,
0x32,0x21,0x1e,0x06,0xe1,0x76,0x01,0x28,
0x02,0x01,0x06,0x00,0xa3,0xe2,0xf4,0xf4,
0x21,0x61,0x1d,0x07,0x82,0x81,0x11,0x07,
0x23,0x21,0x22,0x17,0xa2,0x72,0x01,0x17,
0x35,0x11,0x25,0x00,0x40,0x73,0x72,0x01,
0xb5,0x01,0x0f,0x0F,0xa8,0xa5,0x51,0x02,
0x17,0xc1,0x24,0x07,0xf8,0xf8,0x22,0x12,
0x71,0x23,0x11,0x06,0x65,0x74,0x18,0x16,
0x01,0x02,0xd3,0x05,0xc9,0x95,0x03,0x02,
0x61,0x63,0x0c,0x00,0x94,0xC0,0x33,0xf6,
0x21,0x72,0x0d,0x00,0xc1,0xd5,0x56,0x06,
0x01,0x01,0x18,0x0f,0xdf,0xf8,0x6a,0x6d,
0x01,0x01,0x00,0x00,0xc8,0xd8,0xa7,0x68,
0x05,0x01,0x00,0x00,0xf8,0xaa,0x59,0x55,
},{
/* YMF281B presets */
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, // 0: User
0x62,0x21,0x1a,0x07,0xf0,0x6f,0x00,0x16, // 1: Electric Strings (form Chabin's patch)
0x40,0x10,0x45,0x00,0xf6,0x83,0x73,0x63, // 2: Bow Wow (based on plgDavid's patch, KSL fixed)
0x13,0x01,0x99,0x00,0xf2,0xc3,0x21,0x23, // 3: Electric Guitar (similar to YM2413 but different DR(C))
0x01,0x61,0x0b,0x0f,0xf9,0x64,0x70,0x17, // 4: Organ (based on Chabin, TL/DR fixed)
0x32,0x21,0x1e,0x06,0xe1,0x76,0x01,0x28, // 5: Clarinet (identical to YM2413)
0x60,0x01,0x82,0x0e,0xf9,0x61,0x20,0x27, // 6: Saxophone (based on plgDavid, PM/EG fixed)
0x21,0x61,0x1c,0x07,0x84,0x81,0x11,0x07, // 7: Trumpet (similar to YM2413 but different TL/DR(M))
0x37,0x32,0xc9,0x01,0x66,0x64,0x40,0x28, // 8: Street Organ (from Chabin)
0x01,0x21,0x07,0x03,0xa5,0x71,0x51,0x07, // 9: Synth Brass (based on Chabin, TL fixed)
0x06,0x01,0x5e,0x07,0xf3,0xf3,0xf6,0x13, // A: Electric Piano (based on Chabin, DR/RR/KR fixed)
0x00,0x00,0x18,0x06,0xf5,0xf3,0x20,0x23, // B: Bass (based on Chabin, EG fixed)
0x17,0xc1,0x24,0x07,0xf8,0xf8,0x22,0x12, // C: Vibraphone (identical to YM2413)
0x35,0x64,0x00,0x00,0xff,0xf3,0x77,0xf5, // D: Chimes (from plgDavid)
0x11,0x31,0x00,0x07,0xdd,0xf3,0xff,0xfb, // E: Tom Tom II (from plgDavid)
0x3a,0x21,0x00,0x07,0x80,0x84,0x0f,0xf5, // F: Noise (based on plgDavid, AR fixed)
0x01,0x01,0x18,0x0f,0xdf,0xf8,0x6a,0x6d, // R: Bass Drum (identical to YM2413)
0x01,0x01,0x00,0x00,0xc8,0xd8,0xa7,0x68, // R: High-Hat(M) / Snare Drum(C) (identical to YM2413)
0x05,0x01,0x00,0x00,0xf8,0xaa,0x59,0x55, // R: Tom-tom(M) / Top Cymbal(C) (identical to YM2413)
},{
/* YM2423, taken from ymfm */
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x61,0x61,0x1B,0x07,0x94,0x5F,0x10,0x06,
0x93,0xB1,0x51,0x04,0xF3,0xF2,0x70,0xFB,
0x41,0x21,0x11,0x85,0xF2,0xF2,0x70,0x75,
0x93,0xB2,0x28,0x07,0xF3,0xF2,0x70,0xB4,
0x72,0x31,0x97,0x05,0x51,0x6F,0x60,0x09,
0x13,0x30,0x18,0x06,0xF7,0xF4,0x50,0x85,
0x51,0x31,0x1C,0x07,0x51,0x71,0x20,0x26,
0x41,0xF4,0x1B,0x07,0x74,0x34,0x00,0x06,
0x50,0x30,0x4D,0x03,0x42,0x65,0x20,0x06,
0x40,0x20,0x10,0x85,0xF3,0xF5,0x20,0x04,
0x61,0x61,0x1B,0x07,0xC5,0x96,0xF3,0xF6,
0xF9,0xF1,0xDC,0x00,0xF5,0xF3,0x77,0xF2,
0x60,0xA2,0x91,0x03,0x94,0xC1,0xF7,0xF7,
0x30,0x30,0x17,0x06,0xF3,0xF1,0xB7,0xFC,
0x31,0x36,0x0D,0x05,0xF2,0xF4,0x27,0x9C,
0x01,0x01,0x18,0x0F,0xDF,0xF8,0x6A,0x6D,
0x01,0x01,0x00,0x00,0xC8,0xD8,0xA7,0x48,
0x05,0x01,0x00,0x00,0xF8,0xAA,0x59,0x55,
}};
/* clang-format on */
/* phase increment counter */
#define DP_BITS 19
#define DP_WIDTH (1 << DP_BITS)
#define DP_BASE_BITS (DP_BITS - PG_BITS)
/* dynamic range of envelope output */
#define EG_STEP 0.375
#define EG_BITS 7
#define EG_MUTE ((1 << EG_BITS) - 1)
#define EG_MAX (EG_MUTE - 4)
/* dynamic range of total level */
#define TL_STEP 0.75
#define TL_BITS 6
/* dynamic range of sustine level */
#define SL_STEP 3.0
#define SL_BITS 4
/* damper speed before key-on. key-scale affects. */
#define DAMPER_RATE 12
#define TL2EG(d) ((d) << 1)
/* sine table */
#define PG_BITS 10 /* 2^10 = 1024 length sine table */
#define PG_WIDTH (1 << PG_BITS)
/* clang-format off */
/* exp_table[x] = round((exp2((double)x / 256.0) - 1) * 1024) */
static uint16_t exp_table[256] = {
0, 3, 6, 8, 11, 14, 17, 20, 22, 25, 28, 31, 34, 37, 40, 42,
45, 48, 51, 54, 57, 60, 63, 66, 69, 72, 75, 78, 81, 84, 87, 90,
93, 96, 99, 102, 105, 108, 111, 114, 117, 120, 123, 126, 130, 133, 136, 139,
142, 145, 148, 152, 155, 158, 161, 164, 168, 171, 174, 177, 181, 184, 187, 190,
194, 197, 200, 204, 207, 210, 214, 217, 220, 224, 227, 231, 234, 237, 241, 244,
248, 251, 255, 258, 262, 265, 268, 272, 276, 279, 283, 286, 290, 293, 297, 300,
304, 308, 311, 315, 318, 322, 326, 329, 333, 337, 340, 344, 348, 352, 355, 359,
363, 367, 370, 374, 378, 382, 385, 389, 393, 397, 401, 405, 409, 412, 416, 420,
424, 428, 432, 436, 440, 444, 448, 452, 456, 460, 464, 468, 472, 476, 480, 484,
488, 492, 496, 501, 505, 509, 513, 517, 521, 526, 530, 534, 538, 542, 547, 551,
555, 560, 564, 568, 572, 577, 581, 585, 590, 594, 599, 603, 607, 612, 616, 621,
625, 630, 634, 639, 643, 648, 652, 657, 661, 666, 670, 675, 680, 684, 689, 693,
698, 703, 708, 712, 717, 722, 726, 731, 736, 741, 745, 750, 755, 760, 765, 770,
774, 779, 784, 789, 794, 799, 804, 809, 814, 819, 824, 829, 834, 839, 844, 849,
854, 859, 864, 869, 874, 880, 885, 890, 895, 900, 906, 911, 916, 921, 927, 932,
937, 942, 948, 953, 959, 964, 969, 975, 980, 986, 991, 996, 1002, 1007, 1013, 1018
};
/* fullsin_table[x] = round(-log2(sin((x + 0.5) * PI / (PG_WIDTH / 4) / 2)) * 256) */
static uint16_t fullsin_table[PG_WIDTH] = {
2137, 1731, 1543, 1419, 1326, 1252, 1190, 1137, 1091, 1050, 1013, 979, 949, 920, 894, 869,
846, 825, 804, 785, 767, 749, 732, 717, 701, 687, 672, 659, 646, 633, 621, 609,
598, 587, 576, 566, 556, 546, 536, 527, 518, 509, 501, 492, 484, 476, 468, 461,
453, 446, 439, 432, 425, 418, 411, 405, 399, 392, 386, 380, 375, 369, 363, 358,
352, 347, 341, 336, 331, 326, 321, 316, 311, 307, 302, 297, 293, 289, 284, 280,
276, 271, 267, 263, 259, 255, 251, 248, 244, 240, 236, 233, 229, 226, 222, 219,
215, 212, 209, 205, 202, 199, 196, 193, 190, 187, 184, 181, 178, 175, 172, 169,
167, 164, 161, 159, 156, 153, 151, 148, 146, 143, 141, 138, 136, 134, 131, 129,
127, 125, 122, 120, 118, 116, 114, 112, 110, 108, 106, 104, 102, 100, 98, 96,
94, 92, 91, 89, 87, 85, 83, 82, 80, 78, 77, 75, 74, 72, 70, 69,
67, 66, 64, 63, 62, 60, 59, 57, 56, 55, 53, 52, 51, 49, 48, 47,
46, 45, 43, 42, 41, 40, 39, 38, 37, 36, 35, 34, 33, 32, 31, 30,
29, 28, 27, 26, 25, 24, 23, 23, 22, 21, 20, 20, 19, 18, 17, 17,
16, 15, 15, 14, 13, 13, 12, 12, 11, 10, 10, 9, 9, 8, 8, 7,
7, 7, 6, 6, 5, 5, 5, 4, 4, 4, 3, 3, 3, 2, 2, 2,
2, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0,
};
/* clang-format on */
static uint16_t halfsin_table[PG_WIDTH];
static uint16_t *wave_table_map[2] = {fullsin_table, halfsin_table};
/* pitch modulator */
/* offset to fnum, rough approximation of 14 cents depth. */
static int8_t pm_table[8][8] = {
{0, 0, 0, 0, 0, 0, 0, 0}, // fnum = 000xxxxxx
{0, 0, 1, 0, 0, 0, -1, 0}, // fnum = 001xxxxxx
{0, 1, 2, 1, 0, -1, -2, -1}, // fnum = 010xxxxxx
{0, 1, 3, 1, 0, -1, -3, -1}, // fnum = 011xxxxxx
{0, 2, 4, 2, 0, -2, -4, -2}, // fnum = 100xxxxxx
{0, 2, 5, 2, 0, -2, -5, -2}, // fnum = 101xxxxxx
{0, 3, 6, 3, 0, -3, -6, -3}, // fnum = 110xxxxxx
{0, 3, 7, 3, 0, -3, -7, -3}, // fnum = 111xxxxxx
};
/* amplitude lfo table */
/* The following envelop pattern is verified on real YM2413. */
/* each element repeates 64 cycles */
static uint8_t am_table[210] = {0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, //
2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, //
4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, //
6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, //
8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, //
10, 10, 10, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 11, 11, 11, //
12, 12, 12, 12, 12, 12, 12, 12, //
13, 13, 13, //
12, 12, 12, 12, 12, 12, 12, 12, //
11, 11, 11, 11, 11, 11, 11, 11, 10, 10, 10, 10, 10, 10, 10, 10, //
9, 9, 9, 9, 9, 9, 9, 9, 8, 8, 8, 8, 8, 8, 8, 8, //
7, 7, 7, 7, 7, 7, 7, 7, 6, 6, 6, 6, 6, 6, 6, 6, //
5, 5, 5, 5, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4, //
3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, //
1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0};
/* envelope decay increment step table */
/* based on andete's research */
static uint8_t eg_step_tables[4][8] = {
{0, 1, 0, 1, 0, 1, 0, 1},
{0, 1, 0, 1, 1, 1, 0, 1},
{0, 1, 1, 1, 0, 1, 1, 1},
{0, 1, 1, 1, 1, 1, 1, 1},
};
enum __OPLL_EG_STATE { ATTACK, DECAY, SUSTAIN, RELEASE, DAMP, UNKNOWN };
static uint32_t ml_table[16] = {1, 1 * 2, 2 * 2, 3 * 2, 4 * 2, 5 * 2, 6 * 2, 7 * 2,
8 * 2, 9 * 2, 10 * 2, 10 * 2, 12 * 2, 12 * 2, 15 * 2, 15 * 2};
#define dB2(x) ((x)*2)
static double kl_table[16] = {dB2(0.000), dB2(9.000), dB2(12.000), dB2(13.875), dB2(15.000), dB2(16.125),
dB2(16.875), dB2(17.625), dB2(18.000), dB2(18.750), dB2(19.125), dB2(19.500),
dB2(19.875), dB2(20.250), dB2(20.625), dB2(21.000)};
static uint32_t tll_table[8 * 16][1 << TL_BITS][4];
static int32_t rks_table[8 * 2][2];
static OPLL_PATCH null_patch = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
static OPLL_PATCH default_patch[OPLL_TONE_NUM][(16 + 3) * 2];
/* don't forget min/max is defined as a macro in stdlib.h of Visual C. */
#ifndef min
static INLINE int min(int i, int j) { return (i < j) ? i : j; }
#endif
#ifndef max
static INLINE int max(int i, int j) { return (i > j) ? i : j; }
#endif
/***************************************************
Internal Sample Rate Converter
****************************************************/
/* Note: to disable internal rate converter, set clock/72 to output sampling rate. */
/*
* LW is truncate length of sinc(x) calculation.
* Lower LW is faster, higher LW results better quality.
* LW must be a non-zero positive even number, no upper limit.
* LW=16 or greater is recommended when upsampling.
* LW=8 is practically okay for downsampling.
*/
#define LW 16
/* resolution of sinc(x) table. sinc(x) where 0.0<=x<1.0 corresponds to sinc_table[0...SINC_RESO-1] */
#define SINC_RESO 256
#define SINC_AMP_BITS 12
// double hamming(double x) { return 0.54 - 0.46 * cos(2 * PI * x); }
static double blackman(double x) { return 0.42 - 0.5 * cos(2 * _PI_ * x) + 0.08 * cos(4 * _PI_ * x); }
static double sinc(double x) { return (x == 0.0 ? 1.0 : sin(_PI_ * x) / (_PI_ * x)); }
static double windowed_sinc(double x) { return blackman(0.5 + 0.5 * x / (LW / 2)) * sinc(x); }
/* f_inp: input frequency. f_out: output frequencey, ch: number of channels */
OPLL_RateConv *OPLL_RateConv_new(double f_inp, double f_out, int ch) {
OPLL_RateConv *conv = malloc(sizeof(OPLL_RateConv));
int i;
conv->ch = ch;
conv->f_ratio = f_inp / f_out;
conv->buf = malloc(sizeof(void *) * ch);
for (i = 0; i < ch; i++) {
conv->buf[i] = malloc(sizeof(conv->buf[0][0]) * LW);
}
/* create sinc_table for positive 0 <= x < LW/2 */
conv->sinc_table = malloc(sizeof(conv->sinc_table[0]) * SINC_RESO * LW / 2);
for (i = 0; i < SINC_RESO * LW / 2; i++) {
const double x = (double)i / SINC_RESO;
if (f_out < f_inp) {
/* for downsampling */
conv->sinc_table[i] = (int16_t)((1 << SINC_AMP_BITS) * windowed_sinc(x / conv->f_ratio) / conv->f_ratio);
} else {
/* for upsampling */
conv->sinc_table[i] = (int16_t)((1 << SINC_AMP_BITS) * windowed_sinc(x));
}
}
return conv;
}
static INLINE int16_t lookup_sinc_table(int16_t *table, double x) {
int16_t index = (int16_t)(x * SINC_RESO);
if (index < 0)
index = -index;
return table[min(SINC_RESO * LW / 2 - 1, index)];
}
void OPLL_RateConv_reset(OPLL_RateConv *conv) {
int i;
conv->timer = 0;
for (i = 0; i < conv->ch; i++) {
memset(conv->buf[i], 0, sizeof(conv->buf[i][0]) * LW);
}
}
/* put original data to this converter at f_inp. */
void OPLL_RateConv_putData(OPLL_RateConv *conv, int ch, int16_t data) {
int16_t *buf = conv->buf[ch];
int i;
for (i = 0; i < LW - 1; i++) {
buf[i] = buf[i + 1];
}
buf[LW - 1] = data;
}
/* get resampled data from this converter at f_out. */
/* this function must be called f_out / f_inp times per one putData call. */
int16_t OPLL_RateConv_getData(OPLL_RateConv *conv, int ch) {
int16_t *buf = conv->buf[ch];
int32_t sum = 0;
int k;
double dn;
conv->timer += conv->f_ratio;
dn = conv->timer - floor(conv->timer);
conv->timer = dn;
for (k = 0; k < LW; k++) {
double x = ((double)k - (LW / 2 - 1)) - dn;
sum += buf[k] * lookup_sinc_table(conv->sinc_table, x);
}
return sum >> SINC_AMP_BITS;
}
void OPLL_RateConv_delete(OPLL_RateConv *conv) {
int i;
for (i = 0; i < conv->ch; i++) {
free(conv->buf[i]);
}
free(conv->buf);
free(conv->sinc_table);
free(conv);
}
/***************************************************
Create tables
****************************************************/
static void makeSinTable(void) {
int x;
for (x = 0; x < PG_WIDTH / 4; x++) {
fullsin_table[PG_WIDTH / 4 + x] = fullsin_table[PG_WIDTH / 4 - x - 1];
}
for (x = 0; x < PG_WIDTH / 2; x++) {
fullsin_table[PG_WIDTH / 2 + x] = 0x8000 | fullsin_table[x];
}
for (x = 0; x < PG_WIDTH / 2; x++)
halfsin_table[x] = fullsin_table[x];
for (x = PG_WIDTH / 2; x < PG_WIDTH; x++)
halfsin_table[x] = 0xfff;
}
static void makeTllTable(void) {
int32_t tmp;
int32_t fnum, block, TL, KL;
for (fnum = 0; fnum < 16; fnum++) {
for (block = 0; block < 8; block++) {
for (TL = 0; TL < 64; TL++) {
for (KL = 0; KL < 4; KL++) {
if (KL == 0) {
tll_table[(block << 4) | fnum][TL][KL] = TL2EG(TL);
} else {
tmp = (int32_t)(kl_table[fnum] - dB2(3.000) * (7 - block));
if (tmp <= 0)
tll_table[(block << 4) | fnum][TL][KL] = TL2EG(TL);
else
tll_table[(block << 4) | fnum][TL][KL] = (uint32_t)((tmp >> (3 - KL)) / EG_STEP) + TL2EG(TL);
}
}
}
}
}
}
static void makeRksTable(void) {
int fnum8, block;
for (fnum8 = 0; fnum8 < 2; fnum8++)
for (block = 0; block < 8; block++) {
rks_table[(block << 1) | fnum8][1] = (block << 1) + fnum8;
rks_table[(block << 1) | fnum8][0] = block >> 1;
}
}
static void makeDefaultPatch(void) {
int i, j;
for (i = 0; i < OPLL_TONE_NUM; i++)
for (j = 0; j < 19; j++)
OPLL_getDefaultPatch(i, j, &default_patch[i][j * 2]);
}
static uint8_t table_initialized = 0;
static void initializeTables(void) {
makeTllTable();
makeRksTable();
makeSinTable();
makeDefaultPatch();
table_initialized = 1;
}
/*********************************************************
Synthesizing
*********************************************************/
#define SLOT_BD1 12
#define SLOT_BD2 13
#define SLOT_HH 14
#define SLOT_SD 15
#define SLOT_TOM 16
#define SLOT_CYM 17
/* utility macros */
#define MOD(o, x) (&(o)->slot[(x) << 1])
#define CAR(o, x) (&(o)->slot[((x) << 1) | 1])
#define BIT(s, b) (((s) >> (b)) & 1)
#if OPLL_DEBUG
static void _debug_print_patch(OPLL_SLOT *slot) {
OPLL_PATCH *p = slot->patch;
printf("[slot#%d am:%d pm:%d eg:%d kr:%d ml:%d kl:%d tl:%d ws:%d fb:%d A:%d D:%d S:%d R:%d]\n", slot->number, //
p->AM, p->PM, p->EG, p->KR, p->ML, //
p->KL, p->TL, p->WS, p->FB, //
p->AR, p->DR, p->SL, p->RR);
}
static char *_debug_eg_state_name(OPLL_SLOT *slot) {
switch (slot->eg_state) {
case ATTACK:
return "attack";
case DECAY:
return "decay";
case SUSTAIN:
return "sustain";
case RELEASE:
return "release";
case DAMP:
return "damp";
default:
return "unknown";
}
}
static INLINE void _debug_print_slot_info(OPLL_SLOT *slot) {
char *name = _debug_eg_state_name(slot);
printf("[slot#%d state:%s fnum:%03x rate:%d-%d]\n", slot->number, name, slot->blk_fnum, slot->eg_rate_h,
slot->eg_rate_l);
_debug_print_patch(slot);
fflush(stdout);
}
#endif
static INLINE int get_parameter_rate(OPLL_SLOT *slot) {
if ((slot->type & 1) == 0 && slot->key_flag == 0) {
return 0;
}
switch (slot->eg_state) {
case ATTACK:
return slot->patch->AR;
case DECAY:
return slot->patch->DR;
case SUSTAIN:
return slot->patch->EG ? 0 : slot->patch->RR;
case RELEASE:
if (slot->sus_flag) {
return 5;
} else if (slot->patch->EG) {
return slot->patch->RR;
} else {
return 7;
}
case DAMP:
return DAMPER_RATE;
default:
return 0;
}
}
enum SLOT_UPDATE_FLAG {
UPDATE_WS = 1,
UPDATE_TLL = 2,
UPDATE_RKS = 4,
UPDATE_EG = 8,
UPDATE_ALL = 255,
};
static INLINE void request_update(OPLL_SLOT *slot, int flag) { slot->update_requests |= flag; }
static void commit_slot_update(OPLL_SLOT *slot) {
#if OPLL_DEBUG
if (slot->last_eg_state != slot->eg_state) {
_debug_print_slot_info(slot);
slot->last_eg_state = slot->eg_state;
}
#endif
if (slot->update_requests & UPDATE_WS) {
slot->wave_table = wave_table_map[slot->patch->WS];
}
if (slot->update_requests & UPDATE_TLL) {
if ((slot->type & 1) == 0) {
slot->tll = tll_table[slot->blk_fnum >> 5][slot->patch->TL][slot->patch->KL];
} else {
slot->tll = tll_table[slot->blk_fnum >> 5][slot->volume][slot->patch->KL];
}
}
if (slot->update_requests & UPDATE_RKS) {
slot->rks = rks_table[slot->blk_fnum >> 8][slot->patch->KR];
}
if (slot->update_requests & (UPDATE_RKS | UPDATE_EG)) {
int p_rate = get_parameter_rate(slot);
if (p_rate == 0) {
slot->eg_shift = 0;
slot->eg_rate_h = 0;
slot->eg_rate_l = 0;
return;
}
slot->eg_rate_h = min(15, p_rate + (slot->rks >> 2));
slot->eg_rate_l = slot->rks & 3;
if (slot->eg_state == ATTACK) {
slot->eg_shift = (0 < slot->eg_rate_h && slot->eg_rate_h < 12) ? (13 - slot->eg_rate_h) : 0;
} else {
slot->eg_shift = (slot->eg_rate_h < 13) ? (13 - slot->eg_rate_h) : 0;
}
}
slot->update_requests = 0;
}
static void reset_slot(OPLL_SLOT *slot, int number) {
slot->number = number;
slot->type = number % 2;
slot->pg_keep = 0;
slot->wave_table = wave_table_map[0];
slot->pg_phase = 0;
slot->output[0] = 0;
slot->output[1] = 0;
slot->eg_state = RELEASE;
slot->eg_shift = 0;
slot->rks = 0;
slot->tll = 0;
slot->key_flag = 0;
slot->sus_flag = 0;
slot->blk_fnum = 0;
slot->blk = 0;
slot->fnum = 0;
slot->volume = 0;
slot->pg_out = 0;
slot->eg_out = EG_MUTE;
slot->patch = &null_patch;
}
static INLINE void slotOn(OPLL *opll, int i) {
OPLL_SLOT *slot = &opll->slot[i];
slot->key_flag = 1;
slot->eg_state = DAMP;
request_update(slot, UPDATE_EG);
}
static INLINE void slotOff(OPLL *opll, int i) {
OPLL_SLOT *slot = &opll->slot[i];
slot->key_flag = 0;
if (slot->type & 1) {
slot->eg_state = RELEASE;
request_update(slot, UPDATE_EG);
}
}
static INLINE void update_key_status(OPLL *opll) {
const uint8_t r14 = opll->reg[0x0e];
const uint8_t rhythm_mode = BIT(r14, 5);
uint32_t new_slot_key_status = 0;
uint32_t updated_status;
int ch;
for (ch = 0; ch < 9; ch++)
if (opll->reg[0x20 + ch] & 0x10)
new_slot_key_status |= 3 << (ch * 2);
if (rhythm_mode) {
if (r14 & 0x10)
new_slot_key_status |= 3 << SLOT_BD1;
if (r14 & 0x01)
new_slot_key_status |= 1 << SLOT_HH;
if (r14 & 0x08)
new_slot_key_status |= 1 << SLOT_SD;
if (r14 & 0x04)
new_slot_key_status |= 1 << SLOT_TOM;
if (r14 & 0x02)
new_slot_key_status |= 1 << SLOT_CYM;
}
updated_status = opll->slot_key_status ^ new_slot_key_status;
if (updated_status) {
int i;
for (i = 0; i < 18; i++)
if (BIT(updated_status, i)) {
if (BIT(new_slot_key_status, i)) {
slotOn(opll, i);
} else {
slotOff(opll, i);
}
}
}
opll->slot_key_status = new_slot_key_status;
}
static INLINE void set_patch(OPLL *opll, int32_t ch, int32_t num) {
opll->patch_number[ch] = num;
MOD(opll, ch)->patch = &opll->patch[num * 2 + 0];
CAR(opll, ch)->patch = &opll->patch[num * 2 + 1];
request_update(MOD(opll, ch), UPDATE_ALL);
request_update(CAR(opll, ch), UPDATE_ALL);
}
static INLINE void set_sus_flag(OPLL *opll, int ch, int flag) {
CAR(opll, ch)->sus_flag = flag;
request_update(CAR(opll, ch), UPDATE_EG);
if (MOD(opll, ch)->type & 1) {
MOD(opll, ch)->sus_flag = flag;
request_update(MOD(opll, ch), UPDATE_EG);
}
}
/* set volume ( volume : 6bit, register value << 2 ) */
static INLINE void set_volume(OPLL *opll, int ch, int volume) {
CAR(opll, ch)->volume = volume;
request_update(CAR(opll, ch), UPDATE_TLL);
}
static INLINE void set_slot_volume(OPLL_SLOT *slot, int volume) {
slot->volume = volume;
request_update(slot, UPDATE_TLL);
}
/* set f-Nnmber ( fnum : 9bit ) */
static INLINE void set_fnumber(OPLL *opll, int ch, int fnum) {
OPLL_SLOT *car = CAR(opll, ch);
OPLL_SLOT *mod = MOD(opll, ch);
car->fnum = fnum;
car->blk_fnum = (car->blk_fnum & 0xe00) | (fnum & 0x1ff);
mod->fnum = fnum;
mod->blk_fnum = (mod->blk_fnum & 0xe00) | (fnum & 0x1ff);
request_update(car, UPDATE_EG | UPDATE_RKS | UPDATE_TLL);
request_update(mod, UPDATE_EG | UPDATE_RKS | UPDATE_TLL);
}
/* set block data (blk : 3bit ) */
static INLINE void set_block(OPLL *opll, int ch, int blk) {
OPLL_SLOT *car = CAR(opll, ch);
OPLL_SLOT *mod = MOD(opll, ch);
car->blk = blk;
car->blk_fnum = ((blk & 7) << 9) | (car->blk_fnum & 0x1ff);
mod->blk = blk;
mod->blk_fnum = ((blk & 7) << 9) | (mod->blk_fnum & 0x1ff);
request_update(car, UPDATE_EG | UPDATE_RKS | UPDATE_TLL);
request_update(mod, UPDATE_EG | UPDATE_RKS | UPDATE_TLL);
}
static INLINE void update_rhythm_mode(OPLL *opll) {
const uint8_t new_rhythm_mode = (opll->reg[0x0e] >> 5) & 1;
if (opll->rhythm_mode != new_rhythm_mode) {
if (new_rhythm_mode) {
opll->slot[SLOT_HH].type = 3;
opll->slot[SLOT_HH].pg_keep = 1;
opll->slot[SLOT_SD].type = 3;
opll->slot[SLOT_TOM].type = 3;
opll->slot[SLOT_CYM].type = 3;
opll->slot[SLOT_CYM].pg_keep = 1;
set_patch(opll, 6, 16);
set_patch(opll, 7, 17);
set_patch(opll, 8, 18);
set_slot_volume(&opll->slot[SLOT_HH], ((opll->reg[0x37] >> 4) & 15) << 2);
set_slot_volume(&opll->slot[SLOT_TOM], ((opll->reg[0x38] >> 4) & 15) << 2);
} else {
opll->slot[SLOT_HH].type = 0;
opll->slot[SLOT_HH].pg_keep = 0;
opll->slot[SLOT_SD].type = 1;
opll->slot[SLOT_TOM].type = 0;
opll->slot[SLOT_CYM].type = 1;
opll->slot[SLOT_CYM].pg_keep = 0;
set_patch(opll, 6, opll->reg[0x36] >> 4);
set_patch(opll, 7, opll->reg[0x37] >> 4);
set_patch(opll, 8, opll->reg[0x38] >> 4);
}
}
opll->rhythm_mode = new_rhythm_mode;
}
static void update_ampm(OPLL *opll) {
if (opll->test_flag & 2) {
opll->pm_phase = 0;
opll->am_phase = 0;
} else {
opll->pm_phase += (opll->test_flag & 8) ? 1024 : 1;
opll->am_phase += (opll->test_flag & 8) ? 64 : 1;
}
opll->lfo_am = am_table[(opll->am_phase >> 6) % sizeof(am_table)];
}
static void update_noise(OPLL *opll, int cycle) {
int i;
for (i = 0; i < cycle; i++) {
if (opll->noise & 1) {
opll->noise ^= 0x800200;
}
opll->noise >>= 1;
}
}
static void update_short_noise(OPLL *opll) {
const uint32_t pg_hh = opll->slot[SLOT_HH].pg_out;
const uint32_t pg_cym = opll->slot[SLOT_CYM].pg_out;
const uint8_t h_bit2 = BIT(pg_hh, PG_BITS - 8);
const uint8_t h_bit7 = BIT(pg_hh, PG_BITS - 3);
const uint8_t h_bit3 = BIT(pg_hh, PG_BITS - 7);
const uint8_t c_bit3 = BIT(pg_cym, PG_BITS - 7);
const uint8_t c_bit5 = BIT(pg_cym, PG_BITS - 5);
opll->short_noise = (h_bit2 ^ h_bit7) | (h_bit3 ^ c_bit5) | (c_bit3 ^ c_bit5);
}
static INLINE void calc_phase(OPLL_SLOT *slot, int32_t pm_phase, uint8_t reset) {
const int8_t pm = slot->patch->PM ? pm_table[(slot->fnum >> 6) & 7][(pm_phase >> 10) & 7] : 0;
if (reset) {
slot->pg_phase = 0;
}
slot->pg_phase += (((slot->fnum & 0x1ff) * 2 + pm) * ml_table[slot->patch->ML]) << slot->blk >> 2;
slot->pg_phase &= (DP_WIDTH - 1);
slot->pg_out = slot->pg_phase >> DP_BASE_BITS;
}
static INLINE uint8_t lookup_attack_step(OPLL_SLOT *slot, uint32_t counter) {
int index;
switch (slot->eg_rate_h) {
case 12:
index = (counter & 0xc) >> 1;
return 4 - eg_step_tables[slot->eg_rate_l][index];
case 13:
index = (counter & 0xc) >> 1;
return 3 - eg_step_tables[slot->eg_rate_l][index];
case 14:
index = (counter & 0xc) >> 1;
return 2 - eg_step_tables[slot->eg_rate_l][index];
case 0:
case 15:
return 0;
default:
index = counter >> slot->eg_shift;
return eg_step_tables[slot->eg_rate_l][index & 7] ? 4 : 0;
}
}
static INLINE uint8_t lookup_decay_step(OPLL_SLOT *slot, uint32_t counter) {
int index;
switch (slot->eg_rate_h) {
case 0:
return 0;
case 13:
index = ((counter & 0xc) >> 1) | (counter & 1);
return eg_step_tables[slot->eg_rate_l][index];
case 14:
index = ((counter & 0xc) >> 1);
return eg_step_tables[slot->eg_rate_l][index] + 1;
case 15:
return 2;
default:
index = counter >> slot->eg_shift;
return eg_step_tables[slot->eg_rate_l][index & 7];
}
}
static INLINE void start_envelope(OPLL_SLOT *slot) {
if (min(15, slot->patch->AR + (slot->rks >> 2)) == 15) {
slot->eg_state = DECAY;
slot->eg_out = 0;
} else {
slot->eg_state = ATTACK;
}
request_update(slot, UPDATE_EG);
}
static INLINE void calc_envelope(OPLL_SLOT *slot, OPLL_SLOT *buddy, uint16_t eg_counter, uint8_t test) {
uint32_t mask = (1 << slot->eg_shift) - 1;
uint8_t s;
if (slot->eg_state == ATTACK) {
if (0 < slot->eg_out && 0 < slot->eg_rate_h && (eg_counter & mask & ~3) == 0) {
s = lookup_attack_step(slot, eg_counter);
if (0 < s) {
slot->eg_out = max(0, ((int)slot->eg_out - (slot->eg_out >> s) - 1));
}
}
} else {
if (slot->eg_rate_h > 0 && (eg_counter & mask) == 0) {
slot->eg_out = min(EG_MUTE, slot->eg_out + lookup_decay_step(slot, eg_counter));
}
}
switch (slot->eg_state) {
case DAMP:
// DAMP to ATTACK transition is occured when the envelope reaches EG_MAX (max attenuation but it's not mute).
// Do not forget to check (eg_counter & mask) == 0 to synchronize it with the progress of the envelope.
if (slot->eg_out >= EG_MAX && (eg_counter & mask) == 0) {
start_envelope(slot);
if (slot->type & 1) {
if (!slot->pg_keep) {
slot->pg_phase = 0;
}
if (buddy && !buddy->pg_keep) {
buddy->pg_phase = 0;
}
}
}
break;
case ATTACK:
if (slot->eg_out == 0) {
slot->eg_state = DECAY;
request_update(slot, UPDATE_EG);
}
break;
case DECAY:
// DECAY to SUSTAIN transition must be checked at every cycle regardless of the conditions of the envelope rate and
// counter. i.e. the transition is not synchronized with the progress of the envelope.
if ((slot->eg_out >> 3) == slot->patch->SL) {
slot->eg_state = SUSTAIN;
request_update(slot, UPDATE_EG);
}
break;
case SUSTAIN:
case RELEASE:
default:
break;
}
if (test) {
slot->eg_out = 0;
}
}
static void update_slots(OPLL *opll) {
int i;
opll->eg_counter++;
for (i = 0; i < 18; i++) {
OPLL_SLOT *slot = &opll->slot[i];
OPLL_SLOT *buddy = NULL;
if (slot->type == 0) {
buddy = &opll->slot[i + 1];
}
if (slot->type == 1) {
buddy = &opll->slot[i - 1];
}
if (slot->update_requests) {
commit_slot_update(slot);
}
calc_envelope(slot, buddy, opll->eg_counter, opll->test_flag & 1);
calc_phase(slot, opll->pm_phase, opll->test_flag & 4);
}
}
/* output: -4095...4095 */
static INLINE int16_t lookup_exp_table(uint16_t i) {
/* from andete's expression */
int16_t t = (exp_table[(i & 0xff) ^ 0xff] + 1024);
int16_t res = t >> ((i & 0x7f00) >> 8);
return ((i & 0x8000) ? ~res : res) << 1;
}
static INLINE int16_t to_linear(uint16_t h, OPLL_SLOT *slot, int16_t am) {
uint16_t att;
if (slot->eg_out > EG_MAX)
return 0;
att = min(EG_MUTE, (slot->eg_out + slot->tll + am)) << 4;
return lookup_exp_table(h + att);
}
static INLINE int16_t calc_slot_car(OPLL *opll, int ch, int16_t fm) {
OPLL_SLOT *slot = CAR(opll, ch);
uint8_t am = slot->patch->AM ? opll->lfo_am : 0;
slot->output[1] = slot->output[0];
slot->output[0] = to_linear(slot->wave_table[(slot->pg_out + 2 * (fm >> 1)) & (PG_WIDTH - 1)], slot, am);
return slot->output[0];
}
static INLINE int16_t calc_slot_mod(OPLL *opll, int ch) {
OPLL_SLOT *slot = MOD(opll, ch);
int16_t fm = slot->patch->FB > 0 ? (slot->output[1] + slot->output[0]) >> (9 - slot->patch->FB) : 0;
uint8_t am = slot->patch->AM ? opll->lfo_am : 0;
slot->output[1] = slot->output[0];
slot->output[0] = to_linear(slot->wave_table[(slot->pg_out + fm) & (PG_WIDTH - 1)], slot, am);
return slot->output[0];
}
static INLINE int16_t calc_slot_tom(OPLL *opll) {
OPLL_SLOT *slot = MOD(opll, 8);
return to_linear(slot->wave_table[slot->pg_out], slot, 0);
}
/* Specify phase offset directly based on 10-bit (1024-length) sine table */
#define _PD(phase) ((PG_BITS < 10) ? (phase >> (10 - PG_BITS)) : (phase << (PG_BITS - 10)))
static INLINE int16_t calc_slot_snare(OPLL *opll) {
OPLL_SLOT *slot = CAR(opll, 7);
uint32_t phase;
if (BIT(slot->pg_out, PG_BITS - 2))
phase = (opll->noise & 1) ? _PD(0x300) : _PD(0x200);
else
phase = (opll->noise & 1) ? _PD(0x0) : _PD(0x100);
return to_linear(slot->wave_table[phase], slot, 0);
}
static INLINE int16_t calc_slot_cym(OPLL *opll) {
OPLL_SLOT *slot = CAR(opll, 8);
uint32_t phase = opll->short_noise ? _PD(0x300) : _PD(0x100);
return to_linear(slot->wave_table[phase], slot, 0);
}
static INLINE int16_t calc_slot_hat(OPLL *opll) {
OPLL_SLOT *slot = MOD(opll, 7);
uint32_t phase;
if (opll->short_noise)
phase = (opll->noise & 1) ? _PD(0x2d0) : _PD(0x234);
else
phase = (opll->noise & 1) ? _PD(0x34) : _PD(0xd0);
return to_linear(slot->wave_table[phase], slot, 0);
}
#define _MO(x) (-(x) >> 1)
#define _RO(x) (x)
static void update_output(OPLL *opll) {
int16_t *out;
int i;
update_ampm(opll);
update_short_noise(opll);
update_slots(opll);
out = opll->ch_out;
/* CH1-6 */
for (i = 0; i < 6; i++) {
if (!(opll->mask & OPLL_MASK_CH(i))) {
out[i] = _MO(calc_slot_car(opll, i, calc_slot_mod(opll, i)));
}
}
/* CH7 */
if (!opll->rhythm_mode) {
if (!(opll->mask & OPLL_MASK_CH(6))) {
out[6] = _MO(calc_slot_car(opll, 6, calc_slot_mod(opll, 6)));
}
} else {
if (!(opll->mask & OPLL_MASK_BD)) {
out[9] = _RO(calc_slot_car(opll, 6, calc_slot_mod(opll, 6)));
}
}
update_noise(opll, 14);
/* CH8 */
if (!opll->rhythm_mode) {
if (!(opll->mask & OPLL_MASK_CH(7))) {
out[7] = _MO(calc_slot_car(opll, 7, calc_slot_mod(opll, 7)));
}
} else {
if (!(opll->mask & OPLL_MASK_HH)) {
out[10] = _RO(calc_slot_hat(opll));
}
if (!(opll->mask & OPLL_MASK_SD)) {
out[11] = _RO(calc_slot_snare(opll));
}
}
update_noise(opll, 2);
/* CH9 */
if (!opll->rhythm_mode) {
if (!(opll->mask & OPLL_MASK_CH(8))) {
out[8] = _MO(calc_slot_car(opll, 8, calc_slot_mod(opll, 8)));
}
} else {
if (!(opll->mask & OPLL_MASK_TOM)) {
out[12] = _RO(calc_slot_tom(opll));
}
if (!(opll->mask & OPLL_MASK_CYM)) {
out[13] = _RO(calc_slot_cym(opll));
}
}
update_noise(opll, 2);
}
INLINE static void mix_output(OPLL *opll) {
int16_t out = 0;
int i;
for (i = 0; i < 14; i++) {
out += opll->ch_out[i];
}
if (opll->conv) {
OPLL_RateConv_putData(opll->conv, 0, out);
} else {
opll->mix_out[0] = out;
}
}
INLINE static void mix_output_stereo(OPLL *opll) {
int16_t *out = opll->mix_out;
int i;
out[0] = out[1] = 0;
for (i = 0; i < 14; i++) {
if (opll->pan[i] & 2)
out[0] += (int16_t)(opll->ch_out[i] * opll->pan_fine[i][0]);
if (opll->pan[i] & 1)
out[1] += (int16_t)(opll->ch_out[i] * opll->pan_fine[i][1]);
}
if (opll->conv) {
OPLL_RateConv_putData(opll->conv, 0, out[0]);
OPLL_RateConv_putData(opll->conv, 1, out[1]);
}
}
/***********************************************************
External Interfaces
***********************************************************/
OPLL *OPLL_new(uint32_t clk, uint32_t rate) {
OPLL *opll;
int i;
if (!table_initialized) {
initializeTables();
}
opll = (OPLL *)calloc(sizeof(OPLL), 1);
if (opll == NULL)
return NULL;
for (i = 0; i < 19 * 2; i++)
memcpy(&opll->patch[i], &null_patch, sizeof(OPLL_PATCH));
opll->clk = clk;
opll->rate = rate;
opll->mask = 0;
opll->conv = NULL;
opll->mix_out[0] = 0;
opll->mix_out[1] = 0;
OPLL_reset(opll);
OPLL_setChipType(opll, 0);
OPLL_resetPatch(opll, 0);
return opll;
}
void OPLL_delete(OPLL *opll) {
if (opll->conv) {
OPLL_RateConv_delete(opll->conv);
opll->conv = NULL;
}
free(opll);
}
static void reset_rate_conversion_params(OPLL *opll) {
const double f_out = opll->rate;
const double f_inp = opll->clk / 72.0;
opll->out_time = 0;
opll->out_step = f_inp;
opll->inp_step = f_out;
if (opll->conv) {
OPLL_RateConv_delete(opll->conv);
opll->conv = NULL;
}
if (floor(f_inp) != f_out && floor(f_inp + 0.5) != f_out) {
opll->conv = OPLL_RateConv_new(f_inp, f_out, 2);
}
if (opll->conv) {
OPLL_RateConv_reset(opll->conv);
}
}
void OPLL_reset(OPLL *opll) {
int i;
if (!opll)
return;
opll->adr = 0;
opll->pm_phase = 0;
opll->am_phase = 0;
opll->noise = 0x1;
opll->mask = 0;
opll->rhythm_mode = 0;
opll->slot_key_status = 0;
opll->eg_counter = 0;
reset_rate_conversion_params(opll);
for (i = 0; i < 18; i++)
reset_slot(&opll->slot[i], i);
for (i = 0; i < 9; i++) {
set_patch(opll, i, 0);
}
for (i = 0; i < 0x40; i++)
OPLL_writeReg(opll, i, 0);
for (i = 0; i < 15; i++) {
opll->pan[i] = 3;
opll->pan_fine[i][1] = opll->pan_fine[i][0] = 1.0f;
}
for (i = 0; i < 14; i++) {
opll->ch_out[i] = 0;
}
}
void OPLL_forceRefresh(OPLL *opll) {
int i;
if (opll == NULL)
return;
for (i = 0; i < 9; i++) {
set_patch(opll, i, opll->patch_number[i]);
}
for (i = 0; i < 18; i++) {
request_update(&opll->slot[i], UPDATE_ALL);
}
}
void OPLL_setRate(OPLL *opll, uint32_t rate) {
opll->rate = rate;
reset_rate_conversion_params(opll);
}
void OPLL_setQuality(OPLL *opll, uint8_t q) {}
void OPLL_setChipType(OPLL *opll, uint8_t type) { opll->chip_type = type; }
void OPLL_writeReg(OPLL *opll, uint32_t reg, uint8_t data) {
int ch, i;
if (reg >= 0x40)
return;
/* mirror registers */
if ((0x19 <= reg && reg <= 0x1f) || (0x29 <= reg && reg <= 0x2f) || (0x39 <= reg && reg <= 0x3f)) {
reg -= 9;
}
opll->reg[reg] = (uint8_t)data;
switch (reg) {
case 0x00:
opll->patch[0].AM = (data >> 7) & 1;
opll->patch[0].PM = (data >> 6) & 1;
opll->patch[0].EG = (data >> 5) & 1;
opll->patch[0].KR = (data >> 4) & 1;
opll->patch[0].ML = (data)&15;
for (i = 0; i < 9; i++) {
if (opll->patch_number[i] == 0) {
request_update(MOD(opll, i), UPDATE_RKS | UPDATE_EG);
}
}
break;
case 0x01:
opll->patch[1].AM = (data >> 7) & 1;
opll->patch[1].PM = (data >> 6) & 1;
opll->patch[1].EG = (data >> 5) & 1;
opll->patch[1].KR = (data >> 4) & 1;
opll->patch[1].ML = (data)&15;
for (i = 0; i < 9; i++) {
if (opll->patch_number[i] == 0) {
request_update(CAR(opll, i), UPDATE_RKS | UPDATE_EG);
}
}
break;
case 0x02:
opll->patch[0].KL = (data >> 6) & 3;
opll->patch[0].TL = (data)&63;
for (i = 0; i < 9; i++) {
if (opll->patch_number[i] == 0) {
request_update(MOD(opll, i), UPDATE_TLL);
}
}
break;
case 0x03:
opll->patch[1].KL = (data >> 6) & 3;
opll->patch[1].WS = (data >> 4) & 1;
opll->patch[0].WS = (data >> 3) & 1;
opll->patch[0].FB = (data)&7;
for (i = 0; i < 9; i++) {
if (opll->patch_number[i] == 0) {
request_update(MOD(opll, i), UPDATE_WS);
request_update(CAR(opll, i), UPDATE_WS | UPDATE_TLL);
}
}
break;
case 0x04:
opll->patch[0].AR = (data >> 4) & 15;
opll->patch[0].DR = (data)&15;
for (i = 0; i < 9; i++) {
if (opll->patch_number[i] == 0) {
request_update(MOD(opll, i), UPDATE_EG);
}
}
break;
case 0x05:
opll->patch[1].AR = (data >> 4) & 15;
opll->patch[1].DR = (data)&15;
for (i = 0; i < 9; i++) {
if (opll->patch_number[i] == 0) {
request_update(CAR(opll, i), UPDATE_EG);
}
}
break;
case 0x06:
opll->patch[0].SL = (data >> 4) & 15;
opll->patch[0].RR = (data)&15;
for (i = 0; i < 9; i++) {
if (opll->patch_number[i] == 0) {
request_update(MOD(opll, i), UPDATE_EG);
}
}
break;
case 0x07:
opll->patch[1].SL = (data >> 4) & 15;
opll->patch[1].RR = (data)&15;
for (i = 0; i < 9; i++) {
if (opll->patch_number[i] == 0) {
request_update(CAR(opll, i), UPDATE_EG);
}
}
break;
case 0x0e:
if (opll->chip_type == 1)
break;
update_rhythm_mode(opll);
update_key_status(opll);
break;
case 0x0f:
opll->test_flag = data;
break;
case 0x10:
case 0x11:
case 0x12:
case 0x13:
case 0x14:
case 0x15:
case 0x16:
case 0x17:
case 0x18:
ch = reg - 0x10;
set_fnumber(opll, ch, data + ((opll->reg[0x20 + ch] & 1) << 8));
break;
case 0x20:
case 0x21:
case 0x22:
case 0x23:
case 0x24:
case 0x25:
case 0x26:
case 0x27:
case 0x28:
ch = reg - 0x20;
set_fnumber(opll, ch, ((data & 1) << 8) + opll->reg[0x10 + ch]);
set_block(opll, ch, (data >> 1) & 7);
set_sus_flag(opll, ch, (data >> 5) & 1);
update_key_status(opll);
break;
case 0x30:
case 0x31:
case 0x32:
case 0x33:
case 0x34:
case 0x35:
case 0x36:
case 0x37:
case 0x38:
if ((opll->reg[0x0e] & 32) && (reg >= 0x36)) {
switch (reg) {
case 0x37:
set_slot_volume(MOD(opll, 7), ((data >> 4) & 15) << 2);
break;
case 0x38:
set_slot_volume(MOD(opll, 8), ((data >> 4) & 15) << 2);
break;
default:
break;
}
} else {
set_patch(opll, reg - 0x30, (data >> 4) & 15);
}
set_volume(opll, reg - 0x30, (data & 15) << 2);
break;
default:
break;
}
}
void OPLL_writeIO(OPLL *opll, uint32_t adr, uint8_t val) {
if (adr & 1)
OPLL_writeReg(opll, opll->adr, val);
else
opll->adr = val;
}
void OPLL_setPan(OPLL *opll, uint32_t ch, uint8_t pan) { opll->pan[ch & 15] = pan; }
void OPLL_setPanFine(OPLL *opll, uint32_t ch, float pan[2]) {
opll->pan_fine[ch & 15][0] = pan[0];
opll->pan_fine[ch & 15][1] = pan[1];
}
void OPLL_dumpToPatch(const uint8_t *dump, OPLL_PATCH *patch) {
patch[0].AM = (dump[0] >> 7) & 1;
patch[1].AM = (dump[1] >> 7) & 1;
patch[0].PM = (dump[0] >> 6) & 1;
patch[1].PM = (dump[1] >> 6) & 1;
patch[0].EG = (dump[0] >> 5) & 1;
patch[1].EG = (dump[1] >> 5) & 1;
patch[0].KR = (dump[0] >> 4) & 1;
patch[1].KR = (dump[1] >> 4) & 1;
patch[0].ML = (dump[0]) & 15;
patch[1].ML = (dump[1]) & 15;
patch[0].KL = (dump[2] >> 6) & 3;
patch[1].KL = (dump[3] >> 6) & 3;
patch[0].TL = (dump[2]) & 63;
patch[1].TL = 0;
patch[0].FB = (dump[3]) & 7;
patch[1].FB = 0;
patch[0].WS = (dump[3] >> 3) & 1;
patch[1].WS = (dump[3] >> 4) & 1;
patch[0].AR = (dump[4] >> 4) & 15;
patch[1].AR = (dump[5] >> 4) & 15;
patch[0].DR = (dump[4]) & 15;
patch[1].DR = (dump[5]) & 15;
patch[0].SL = (dump[6] >> 4) & 15;
patch[1].SL = (dump[7] >> 4) & 15;
patch[0].RR = (dump[6]) & 15;
patch[1].RR = (dump[7]) & 15;
}
void OPLL_getDefaultPatch(int32_t type, int32_t num, OPLL_PATCH *patch) {
OPLL_dumpToPatch(default_inst[type] + num * 8, patch);
}
void OPLL_setPatch(OPLL *opll, const uint8_t *dump) {
OPLL_PATCH patch[2];
int i;
for (i = 0; i < 19; i++) {
OPLL_dumpToPatch(dump + i * 8, patch);
memcpy(&opll->patch[i * 2 + 0], &patch[0], sizeof(OPLL_PATCH));
memcpy(&opll->patch[i * 2 + 1], &patch[1], sizeof(OPLL_PATCH));
}
}
void OPLL_patchToDump(const OPLL_PATCH *patch, uint8_t *dump) {
dump[0] = (uint8_t)((patch[0].AM << 7) + (patch[0].PM << 6) + (patch[0].EG << 5) + (patch[0].KR << 4) + patch[0].ML);
dump[1] = (uint8_t)((patch[1].AM << 7) + (patch[1].PM << 6) + (patch[1].EG << 5) + (patch[1].KR << 4) + patch[1].ML);
dump[2] = (uint8_t)((patch[0].KL << 6) + patch[0].TL);
dump[3] = (uint8_t)((patch[1].KL << 6) + (patch[1].WS << 4) + (patch[0].WS << 3) + patch[0].FB);
dump[4] = (uint8_t)((patch[0].AR << 4) + patch[0].DR);
dump[5] = (uint8_t)((patch[1].AR << 4) + patch[1].DR);
dump[6] = (uint8_t)((patch[0].SL << 4) + patch[0].RR);
dump[7] = (uint8_t)((patch[1].SL << 4) + patch[1].RR);
}
void OPLL_copyPatch(OPLL *opll, int32_t num, OPLL_PATCH *patch) {
memcpy(&opll->patch[num], patch, sizeof(OPLL_PATCH));
}
void OPLL_resetPatch(OPLL *opll, uint8_t type) {
int i;
for (i = 0; i < 19 * 2; i++)
OPLL_copyPatch(opll, i, &default_patch[type % OPLL_TONE_NUM][i]);
}
int16_t OPLL_calc(OPLL *opll) {
while (opll->out_step > opll->out_time) {
opll->out_time += opll->inp_step;
update_output(opll);
mix_output(opll);
}
opll->out_time -= opll->out_step;
if (opll->conv) {
opll->mix_out[0] = OPLL_RateConv_getData(opll->conv, 0);
}
return opll->mix_out[0];
}
void OPLL_calcStereo(OPLL *opll, int32_t out[2]) {
while (opll->out_step > opll->out_time) {
opll->out_time += opll->inp_step;
update_output(opll);
mix_output_stereo(opll);
}
opll->out_time -= opll->out_step;
if (opll->conv) {
out[0] = OPLL_RateConv_getData(opll->conv, 0);
out[1] = OPLL_RateConv_getData(opll->conv, 1);
} else {
out[0] = opll->mix_out[0];
out[1] = opll->mix_out[1];
}
}
uint32_t OPLL_setMask(OPLL *opll, uint32_t mask) {
uint32_t ret;
if (opll) {
ret = opll->mask;
opll->mask = mask;
return ret;
} else
return 0;
}
uint32_t OPLL_toggleMask(OPLL *opll, uint32_t mask) {
uint32_t ret;
if (opll) {
ret = opll->mask;
opll->mask ^= mask;
return ret;
} else
return 0;
}