furnace/extern/fftw/dft/simd/common/t3bv_5.c
2022-05-31 03:24:29 -05:00

186 lines
6.2 KiB
C

/*
* Copyright (c) 2003, 2007-14 Matteo Frigo
* Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
*/
/* This file was automatically generated --- DO NOT EDIT */
/* Generated on Tue Sep 14 10:45:57 EDT 2021 */
#include "dft/codelet-dft.h"
#if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
/* Generated by: ../../../genfft/gen_twiddle_c.native -fma -simd -compact -variables 4 -pipeline-latency 8 -twiddle-log3 -precompute-twiddles -no-generate-bytw -n 5 -name t3bv_5 -include dft/simd/t3b.h -sign 1 */
/*
* This function contains 22 FP additions, 23 FP multiplications,
* (or, 13 additions, 14 multiplications, 9 fused multiply/add),
* 24 stack variables, 4 constants, and 10 memory accesses
*/
#include "dft/simd/t3b.h"
static void t3bv_5(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
{
DVK(KP559016994, +0.559016994374947424102293417182819058860154590);
DVK(KP250000000, +0.250000000000000000000000000000000000000000000);
DVK(KP618033988, +0.618033988749894848204586834365638117720309180);
DVK(KP951056516, +0.951056516295153572116439333379382143405698634);
{
INT m;
R *x;
x = ii;
for (m = mb, W = W + (mb * ((TWVL / VL) * 4)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 4), MAKE_VOLATILE_STRIDE(5, rs)) {
V T2, T5, T6, Ta;
T2 = LDW(&(W[0]));
T5 = LDW(&(W[TWVL * 2]));
T6 = VZMUL(T2, T5);
Ta = VZMULJ(T2, T5);
{
V T1, Tk, Tl, T9, Tf, Tg;
T1 = LD(&(x[0]), ms, &(x[0]));
{
V T4, Te, T8, Tc;
{
V T3, Td, T7, Tb;
T3 = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)]));
T4 = VZMUL(T2, T3);
Td = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)]));
Te = VZMUL(T5, Td);
T7 = LD(&(x[WS(rs, 4)]), ms, &(x[0]));
T8 = VZMUL(T6, T7);
Tb = LD(&(x[WS(rs, 2)]), ms, &(x[0]));
Tc = VZMUL(Ta, Tb);
}
Tk = VSUB(T4, T8);
Tl = VSUB(Tc, Te);
T9 = VADD(T4, T8);
Tf = VADD(Tc, Te);
Tg = VADD(T9, Tf);
}
ST(&(x[0]), VADD(T1, Tg), ms, &(x[0]));
{
V Tm, To, Tj, Tn, Th, Ti;
Tm = VMUL(LDK(KP951056516), VFMA(LDK(KP618033988), Tl, Tk));
To = VMUL(LDK(KP951056516), VFNMS(LDK(KP618033988), Tk, Tl));
Th = VFNMS(LDK(KP250000000), Tg, T1);
Ti = VSUB(T9, Tf);
Tj = VFMA(LDK(KP559016994), Ti, Th);
Tn = VFNMS(LDK(KP559016994), Ti, Th);
ST(&(x[WS(rs, 1)]), VFMAI(Tm, Tj), ms, &(x[WS(rs, 1)]));
ST(&(x[WS(rs, 3)]), VFMAI(To, Tn), ms, &(x[WS(rs, 1)]));
ST(&(x[WS(rs, 4)]), VFNMSI(Tm, Tj), ms, &(x[0]));
ST(&(x[WS(rs, 2)]), VFNMSI(To, Tn), ms, &(x[0]));
}
}
}
}
VLEAVE();
}
static const tw_instr twinstr[] = {
VTW(0, 1),
VTW(0, 3),
{ TW_NEXT, VL, 0 }
};
static const ct_desc desc = { 5, XSIMD_STRING("t3bv_5"), twinstr, &GENUS, { 13, 14, 9, 0 }, 0, 0, 0 };
void XSIMD(codelet_t3bv_5) (planner *p) {
X(kdft_dit_register) (p, t3bv_5, &desc);
}
#else
/* Generated by: ../../../genfft/gen_twiddle_c.native -simd -compact -variables 4 -pipeline-latency 8 -twiddle-log3 -precompute-twiddles -no-generate-bytw -n 5 -name t3bv_5 -include dft/simd/t3b.h -sign 1 */
/*
* This function contains 22 FP additions, 18 FP multiplications,
* (or, 19 additions, 15 multiplications, 3 fused multiply/add),
* 24 stack variables, 4 constants, and 10 memory accesses
*/
#include "dft/simd/t3b.h"
static void t3bv_5(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
{
DVK(KP250000000, +0.250000000000000000000000000000000000000000000);
DVK(KP559016994, +0.559016994374947424102293417182819058860154590);
DVK(KP587785252, +0.587785252292473129168705954639072768597652438);
DVK(KP951056516, +0.951056516295153572116439333379382143405698634);
{
INT m;
R *x;
x = ii;
for (m = mb, W = W + (mb * ((TWVL / VL) * 4)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 4), MAKE_VOLATILE_STRIDE(5, rs)) {
V T1, T4, T5, T9;
T1 = LDW(&(W[0]));
T4 = LDW(&(W[TWVL * 2]));
T5 = VZMUL(T1, T4);
T9 = VZMULJ(T1, T4);
{
V Tj, T8, Te, Tg, Th, Tk;
Tj = LD(&(x[0]), ms, &(x[0]));
{
V T3, Td, T7, Tb;
{
V T2, Tc, T6, Ta;
T2 = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)]));
T3 = VZMUL(T1, T2);
Tc = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)]));
Td = VZMUL(T4, Tc);
T6 = LD(&(x[WS(rs, 4)]), ms, &(x[0]));
T7 = VZMUL(T5, T6);
Ta = LD(&(x[WS(rs, 2)]), ms, &(x[0]));
Tb = VZMUL(T9, Ta);
}
T8 = VSUB(T3, T7);
Te = VSUB(Tb, Td);
Tg = VADD(T3, T7);
Th = VADD(Tb, Td);
Tk = VADD(Tg, Th);
}
ST(&(x[0]), VADD(Tj, Tk), ms, &(x[0]));
{
V Tf, Tn, Tm, To, Ti, Tl;
Tf = VBYI(VFMA(LDK(KP951056516), T8, VMUL(LDK(KP587785252), Te)));
Tn = VBYI(VFNMS(LDK(KP951056516), Te, VMUL(LDK(KP587785252), T8)));
Ti = VMUL(LDK(KP559016994), VSUB(Tg, Th));
Tl = VFNMS(LDK(KP250000000), Tk, Tj);
Tm = VADD(Ti, Tl);
To = VSUB(Tl, Ti);
ST(&(x[WS(rs, 1)]), VADD(Tf, Tm), ms, &(x[WS(rs, 1)]));
ST(&(x[WS(rs, 3)]), VSUB(To, Tn), ms, &(x[WS(rs, 1)]));
ST(&(x[WS(rs, 4)]), VSUB(Tm, Tf), ms, &(x[0]));
ST(&(x[WS(rs, 2)]), VADD(Tn, To), ms, &(x[0]));
}
}
}
}
VLEAVE();
}
static const tw_instr twinstr[] = {
VTW(0, 1),
VTW(0, 3),
{ TW_NEXT, VL, 0 }
};
static const ct_desc desc = { 5, XSIMD_STRING("t3bv_5"), twinstr, &GENUS, { 19, 15, 3, 0 }, 0, 0, 0 };
void XSIMD(codelet_t3bv_5) (planner *p) {
X(kdft_dit_register) (p, t3bv_5, &desc);
}
#endif