furnace/src/engine/platform/sound/ymfm/ymfm_adpcm.h

426 lines
14 KiB
C++

// BSD 3-Clause License
//
// Copyright (c) 2021, Aaron Giles
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// 1. Redistributions of source code must retain the above copyright notice, this
// list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// 3. Neither the name of the copyright holder nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#ifndef YMFM_ADPCM_H
#define YMFM_ADPCM_H
#pragma once
#include "ymfm.h"
namespace ymfm
{
//*********************************************************
// INTERFACE CLASSES
//*********************************************************
// forward declarations
class adpcm_a_engine;
class adpcm_b_engine;
// ======================> adpcm_a_registers
//
// ADPCM-A register map:
//
// System-wide registers:
// 00 x------- Dump (disable=1) or keyon (0) control
// --xxxxxx Mask of channels to dump or keyon
// 01 --xxxxxx Total level
// 02 xxxxxxxx Test register
// 08-0D x------- Pan left
// -x------ Pan right
// ---xxxxx Instrument level
// 10-15 xxxxxxxx Start address (low)
// 18-1D xxxxxxxx Start address (high)
// 20-25 xxxxxxxx End address (low)
// 28-2D xxxxxxxx End address (high)
//
class adpcm_a_registers
{
public:
// constants
static constexpr uint32_t OUTPUTS = 2;
static constexpr uint32_t CHANNELS = 6;
static constexpr uint32_t REGISTERS = 0x30;
static constexpr uint32_t ALL_CHANNELS = (1 << CHANNELS) - 1;
// constructor
adpcm_a_registers() { }
// reset to initial state
void reset();
// save/restore
void save_restore(ymfm_saved_state &state);
// map channel number to register offset
static constexpr uint32_t channel_offset(uint32_t chnum)
{
assert(chnum < CHANNELS);
return chnum;
}
// direct read/write access
void write(uint32_t index, uint8_t data) { m_regdata[index] = data; }
// system-wide registers
uint32_t dump() const { return bitfield(m_regdata[0x00], 7); }
uint32_t dump_mask() const { return bitfield(m_regdata[0x00], 0, 6); }
uint32_t total_level() const { return bitfield(m_regdata[0x01], 0, 6); }
uint32_t test() const { return m_regdata[0x02]; }
// per-channel registers
uint32_t ch_pan_left(uint32_t choffs) const { return bitfield(m_regdata[choffs + 0x08], 7); }
uint32_t ch_pan_right(uint32_t choffs) const { return bitfield(m_regdata[choffs + 0x08], 6); }
uint32_t ch_instrument_level(uint32_t choffs) const { return bitfield(m_regdata[choffs + 0x08], 0, 5); }
uint32_t ch_start(uint32_t choffs) const { return m_regdata[choffs + 0x10] | (m_regdata[choffs + 0x18] << 8); }
uint32_t ch_end(uint32_t choffs) const { return m_regdata[choffs + 0x20] | (m_regdata[choffs + 0x28] << 8); }
// per-channel writes
void write_start(uint32_t choffs, uint32_t address)
{
write(choffs + 0x10, address);
write(choffs + 0x18, address >> 8);
}
void write_end(uint32_t choffs, uint32_t address)
{
write(choffs + 0x20, address);
write(choffs + 0x28, address >> 8);
}
private:
// internal state
uint8_t m_regdata[REGISTERS]; // register data
};
// ======================> adpcm_a_channel
class adpcm_a_channel
{
public:
// constructor
adpcm_a_channel(adpcm_a_engine &owner, uint32_t choffs, uint32_t addrshift);
// reset the channel state
void reset();
// save/restore
void save_restore(ymfm_saved_state &state);
// signal key on/off
void keyonoff(bool on);
// master clockingfunction
bool clock();
// return the computed output value, with panning applied
template<int NumOutputs>
void output(ymfm_output<NumOutputs> &output);
// return the last output
int32_t get_last_out(int ch) { return m_lastOut[ch]; }
private:
// internal state
uint32_t const m_choffs; // channel offset
uint32_t const m_address_shift; // address bits shift-left
uint32_t m_playing; // currently playing?
uint32_t m_curnibble; // index of the current nibble
uint32_t m_curbyte; // current byte of data
uint32_t m_curaddress; // current address
int32_t m_accumulator; // accumulator
int32_t m_step_index; // index in the stepping table
int32_t m_lastOut[2]; // last output
adpcm_a_registers &m_regs; // reference to registers
adpcm_a_engine &m_owner; // reference to our owner
};
// ======================> adpcm_a_engine
class adpcm_a_engine
{
public:
static constexpr int CHANNELS = adpcm_a_registers::CHANNELS;
// constructor
adpcm_a_engine(ymfm_interface &intf, uint32_t addrshift);
// reset our status
void reset();
// save/restore
void save_restore(ymfm_saved_state &state);
// master clocking function
uint32_t clock(uint32_t chanmask);
// compute sum of channel outputs
template<int NumOutputs>
void output(ymfm_output<NumOutputs> &output, uint32_t chanmask);
// write to the ADPCM-A registers
void write(uint32_t regnum, uint8_t data);
// set the start/end address for a channel (for hardcoded YM2608 percussion)
void set_start_end(uint8_t chnum, uint16_t start, uint16_t end)
{
uint32_t choffs = adpcm_a_registers::channel_offset(chnum);
m_regs.write_start(choffs, start);
m_regs.write_end(choffs, end);
}
// return a reference to our interface
ymfm_interface &intf() { return m_intf; }
// return a reference to our registers
adpcm_a_registers &regs() { return m_regs; }
// debug functions
adpcm_a_channel* debug_channel(uint32_t index) const { return m_channel[index].get(); }
private:
// internal state
ymfm_interface &m_intf; // reference to the interface
std::unique_ptr<adpcm_a_channel> m_channel[CHANNELS]; // array of channels
adpcm_a_registers m_regs; // registers
};
// ======================> adpcm_b_registers
//
// ADPCM-B register map:
//
// System-wide registers:
// 00 x------- Start of synthesis/analysis
// -x------ Record
// --x----- External/manual driving
// ---x---- Repeat playback
// ----x--- Speaker off
// -------x Reset
// 01 x------- Pan left
// -x------ Pan right
// ----x--- Start conversion
// -----x-- DAC enable
// ------x- DRAM access (1=8-bit granularity; 0=1-bit)
// -------x RAM/ROM (1=ROM, 0=RAM)
// 02 xxxxxxxx Start address (low)
// 03 xxxxxxxx Start address (high)
// 04 xxxxxxxx End address (low)
// 05 xxxxxxxx End address (high)
// 06 xxxxxxxx Prescale value (low)
// 07 -----xxx Prescale value (high)
// 08 xxxxxxxx CPU data/buffer
// 09 xxxxxxxx Delta-N frequency scale (low)
// 0a xxxxxxxx Delta-N frequency scale (high)
// 0b xxxxxxxx Level control
// 0c xxxxxxxx Limit address (low)
// 0d xxxxxxxx Limit address (high)
// 0e xxxxxxxx DAC data [YM2608/10]
// 0f xxxxxxxx PCM data [YM2608/10]
// 0e xxxxxxxx DAC data high [Y8950]
// 0f xx------ DAC data low [Y8950]
// 10 -----xxx DAC data exponent [Y8950]
//
class adpcm_b_registers
{
public:
// constants
static constexpr uint32_t REGISTERS = 0x11;
// constructor
adpcm_b_registers() { }
// reset to initial state
void reset();
// save/restore
void save_restore(ymfm_saved_state &state);
// direct read/write access
void write(uint32_t index, uint8_t data) { m_regdata[index] = data; }
// system-wide registers
uint32_t execute() const { return bitfield(m_regdata[0x00], 7); }
uint32_t record() const { return bitfield(m_regdata[0x00], 6); }
uint32_t external() const { return bitfield(m_regdata[0x00], 5); }
uint32_t repeat() const { return bitfield(m_regdata[0x00], 4); }
uint32_t speaker() const { return bitfield(m_regdata[0x00], 3); }
uint32_t resetflag() const { return bitfield(m_regdata[0x00], 0); }
uint32_t pan_left() const { return bitfield(m_regdata[0x01], 7); }
uint32_t pan_right() const { return bitfield(m_regdata[0x01], 6); }
uint32_t start_conversion() const { return bitfield(m_regdata[0x01], 3); }
uint32_t dac_enable() const { return bitfield(m_regdata[0x01], 2); }
uint32_t dram_8bit() const { return bitfield(m_regdata[0x01], 1); }
uint32_t rom_ram() const { return bitfield(m_regdata[0x01], 0); }
uint32_t start() const { return m_regdata[0x02] | (m_regdata[0x03] << 8); }
uint32_t end() const { return m_regdata[0x04] | (m_regdata[0x05] << 8); }
uint32_t prescale() const { return m_regdata[0x06] | (bitfield(m_regdata[0x07], 0, 3) << 8); }
uint32_t cpudata() const { return m_regdata[0x08]; }
uint32_t delta_n() const { return m_regdata[0x09] | (m_regdata[0x0a] << 8); }
uint32_t level() const { return m_regdata[0x0b]; }
uint32_t limit() const { return m_regdata[0x0c] | (m_regdata[0x0d] << 8); }
uint32_t dac() const { return m_regdata[0x0e]; }
uint32_t pcm() const { return m_regdata[0x0f]; }
private:
// internal state
uint8_t m_regdata[REGISTERS]; // register data
};
// ======================> adpcm_b_channel
class adpcm_b_channel
{
static constexpr int32_t STEP_MIN = 127;
static constexpr int32_t STEP_MAX = 24576;
public:
static constexpr uint8_t STATUS_EOS = 0x01;
static constexpr uint8_t STATUS_BRDY = 0x02;
static constexpr uint8_t STATUS_PLAYING = 0x04;
// constructor
adpcm_b_channel(adpcm_b_engine &owner, uint32_t addrshift);
// reset the channel state
void reset();
// save/restore
void save_restore(ymfm_saved_state &state);
// signal key on/off
void keyonoff(bool on);
// master clocking function
void clock();
// return the computed output value, with panning applied
template<int NumOutputs>
void output(ymfm_output<NumOutputs> &output, uint32_t rshift);
// return the status register
uint8_t status() const { return m_status; }
// handle special register reads
uint8_t read(uint32_t regnum);
// handle special register writes
void write(uint32_t regnum, uint8_t value);
// return the last output
int32_t get_last_out(int ch) { return m_lastOut[ch]; }
private:
// helper - return the current address shift
uint32_t address_shift() const;
// load the start address
void load_start();
// limit checker; stops at the last byte of the chunk described by address_shift()
bool at_limit() const { return (m_curaddress == (((m_regs.limit() + 1) << address_shift()) - 1)); }
// end checker; stops at the last byte of the chunk described by address_shift()
bool at_end() const { return (m_curaddress == (((m_regs.end() + 1) << address_shift()) - 1)); }
// internal state
uint32_t const m_address_shift; // address bits shift-left
uint32_t m_status; // currently playing?
uint32_t m_curnibble; // index of the current nibble
uint32_t m_curbyte; // current byte of data
uint32_t m_dummy_read; // dummy read tracker
uint32_t m_position; // current fractional position
uint32_t m_curaddress; // current address
int32_t m_accumulator; // accumulator
int32_t m_prev_accum; // previous accumulator (for linear interp)
int32_t m_adpcm_step; // next forecast
int32_t m_lastOut[2]; // last output
adpcm_b_registers &m_regs; // reference to registers
adpcm_b_engine &m_owner; // reference to our owner
};
// ======================> adpcm_b_engine
class adpcm_b_engine
{
public:
// constructor
adpcm_b_engine(ymfm_interface &intf, uint32_t addrshift = 0);
// reset our status
void reset();
// save/restore
void save_restore(ymfm_saved_state &state);
// master clocking function
void clock();
// compute sum of channel outputs
template<int NumOutputs>
void output(ymfm_output<NumOutputs> &output, uint32_t rshift);
// get last output
int32_t get_last_out(int ch) { return m_channel->get_last_out(ch); }
// read from the ADPCM-B registers
uint32_t read(uint32_t regnum) { return m_channel->read(regnum); }
// write to the ADPCM-B registers
void write(uint32_t regnum, uint8_t data);
// status
uint8_t status() const { return m_channel->status(); }
// return a reference to our interface
ymfm_interface &intf() { return m_intf; }
// return a reference to our registers
adpcm_b_registers &regs() { return m_regs; }
private:
// internal state
ymfm_interface &m_intf; // reference to our interface
std::unique_ptr<adpcm_b_channel> m_channel; // channel pointer
adpcm_b_registers m_regs; // registers
};
}
#endif // YMFM_ADPCM_H