furnace/src/engine/platform/sound/swan.cpp

410 lines
9.8 KiB
C++

/******************************************************************************/
/* Mednafen - Multi-system Emulator */
/******************************************************************************/
/* sound.cpp - WonderSwan Sound Emulation
** Copyright (C) 2007-2017 Mednafen Team
** Copyright (C) 2016 Alex 'trap15' Marshall - http://daifukkat.su/
**
** This program is free software; you can redistribute it and/or
** modify it under the terms of the GNU General Public License
** as published by the Free Software Foundation; either version 2
** of the License, or (at your option) any later version.
**
** This program is distributed in the hope that it will be useful,
** but WITHOUT ANY WARRANTY; without even the implied warranty of
** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
** GNU General Public License for more details.
**
** You should have received a copy of the GNU General Public License
** along with this program; if not, write to the Free Software Foundation, Inc.,
** 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
#include "swan.h"
#include <string.h>
#define MK_SAMPLE_CACHE \
{ \
int sample; \
sample = (((wsRAM[(/*(SampleRAMPos << 6) + */(sample_pos[ch] >> 1) + (ch << 4)) ] >> ((sample_pos[ch] & 1) ? 4 : 0)) & 0x0F)); \
sample_cache[ch][0] = sample * ((volume[ch] >> 4) & 0x0F); \
sample_cache[ch][1] = sample * ((volume[ch] >> 0) & 0x0F); \
}
#define MK_SAMPLE_CACHE_NOISE \
{ \
int sample; \
sample = ((nreg & 1) ? 0xF : 0x0); \
sample_cache[ch][0] = sample * ((volume[ch] >> 4) & 0x0F); \
sample_cache[ch][1] = sample * ((volume[ch] >> 0) & 0x0F); \
}
#define MK_SAMPLE_CACHE_VOICE \
{ \
int sample, half; \
sample = volume[ch]; \
half = sample >> 1; \
sample_cache[ch][0] = (voice_volume & 4) ? sample : (voice_volume & 8) ? half : 0; \
sample_cache[ch][1] = (voice_volume & 1) ? sample : (voice_volume & 2) ? half : 0; \
}
#define SYNCSAMPLE(wt) /* \
{ \
int32_t left = sample_cache[ch][0], right = sample_cache[ch][1]; \
WaveSynth.offset_inline(wt, left - last_val[ch][0], sbuf[0]); \
WaveSynth.offset_inline(wt, right - last_val[ch][1], sbuf[1]); \
last_val[ch][0] = left; \
last_val[ch][1] = right; \
} */
#define SYNCSAMPLE_NOISE(wt) SYNCSAMPLE(wt)
void WSwan::SoundUpdate(uint32_t v30mz_timestamp)
{
int32_t run_time;
//printf("%d\n", v30mz_timestamp);
//printf("%02x %02x\n", control, noise_control);
run_time = v30mz_timestamp - last_ts;
for(int y = 0; y < 2; y++)
sbuf[y] = 0;
for(unsigned int ch = 0; ch < 4; ch++)
{
// Channel is disabled?
if(!(control & (1 << ch)))
continue;
if(ch == 1 && (control & 0x20)) // Direct D/A mode?
{
MK_SAMPLE_CACHE_VOICE;
SYNCSAMPLE(v30mz_timestamp);
}
else if(ch == 2 && (control & 0x40) && sweep_value) // Sweep
{
uint32_t tmp_pt = 2048 - period[ch];
uint32_t tmp_run_time = run_time;
while(tmp_run_time)
{
int32_t sub_run_time = tmp_run_time;
if(sub_run_time > sweep_8192_divider)
sub_run_time = sweep_8192_divider;
sweep_8192_divider -= sub_run_time;
if(sweep_8192_divider <= 0)
{
sweep_8192_divider += 8192;
sweep_counter--;
if(sweep_counter <= 0)
{
sweep_counter = sweep_step + 1;
period[ch] = (period[ch] + (int8_t)sweep_value) & 0x7FF;
}
}
if(tmp_pt > 4)
{
period_counter[ch] -= sub_run_time;
while(period_counter[ch] <= 0)
{
sample_pos[ch] = (sample_pos[ch] + 1) & 0x1F;
MK_SAMPLE_CACHE;
period_counter[ch] += tmp_pt;
}
}
tmp_run_time -= sub_run_time;
}
}
else if(ch == 3 && (control & 0x80) && (noise_control & 0x10)) // Noise
{
uint32_t tmp_pt = 2048 - period[ch];
period_counter[ch] -= run_time;
while(period_counter[ch] <= 0)
{
static const uint8_t stab[8] = { 14, 10, 13, 4, 8, 6, 9, 11 };
nreg = ((nreg << 1) | ((1 ^ (nreg >> 7) ^ (nreg >> stab[noise_control & 0x7])) & 1)) & 0x7FFF;
if(control & 0x80)
{
MK_SAMPLE_CACHE_NOISE;
SYNCSAMPLE_NOISE(v30mz_timestamp + period_counter[ch]);
}
else if(tmp_pt > 4)
{
sample_pos[ch] = (sample_pos[ch] + 1) & 0x1F;
MK_SAMPLE_CACHE;
SYNCSAMPLE(v30mz_timestamp + period_counter[ch]);
}
period_counter[ch] += tmp_pt;
}
}
else
{
uint32_t tmp_pt = 2048 - period[ch];
if(tmp_pt > 4)
{
period_counter[ch] -= run_time;
while(period_counter[ch] <= 0)
{
sample_pos[ch] = (sample_pos[ch] + 1) & 0x1F;
MK_SAMPLE_CACHE;
SYNCSAMPLE(v30mz_timestamp + period_counter[ch]); // - period_counter[ch]);
period_counter[ch] += tmp_pt;
}
}
}
sbuf[0] += sample_cache[ch][0];
sbuf[1] += sample_cache[ch][1];
}
if(HVoiceCtrl & 0x80)
{
int16_t sample = (uint8_t)HyperVoice;
switch(HVoiceCtrl & 0xC)
{
case 0x0: sample = (uint16_t)sample << (8 - (HVoiceCtrl & 3)); break;
case 0x4: sample = (uint16_t)(sample | -0x100) << (8 - (HVoiceCtrl & 3)); break;
case 0x8: sample = (uint16_t)((int8_t)sample) << (8 - (HVoiceCtrl & 3)); break;
case 0xC: sample = (uint16_t)sample << 8; break;
}
// bring back to 11bit, keeping signedness
sample >>= 5;
int32_t left, right;
left = (HVoiceChanCtrl & 0x40) ? sample : 0;
right = (HVoiceChanCtrl & 0x20) ? sample : 0;
// WaveSynth.offset_inline(v30mz_timestamp, left - last_hv_val[0], sbuf[0]);
// WaveSynth.offset_inline(v30mz_timestamp, right - last_hv_val[1], sbuf[1]);
// last_hv_val[0] = left;
// last_hv_val[1] = right;
sbuf[0] += left;
sbuf[1] += right;
}
last_ts = v30mz_timestamp;
}
void WSwan::SoundWrite(uint32_t A, uint8_t V)
{
if(A >= 0x80 && A <= 0x87)
{
int ch = (A - 0x80) >> 1;
if(A & 1)
period[ch] = (period[ch] & 0x00FF) | ((V & 0x07) << 8);
else
period[ch] = (period[ch] & 0x0700) | ((V & 0xFF) << 0);
//printf("Period %d: 0x%04x --- %f\n", ch, period[ch], 3072000.0 / (2048 - period[ch]));
}
else if(A >= 0x88 && A <= 0x8B)
{
volume[A - 0x88] = V;
}
else if(A == 0x8C)
sweep_value = V;
else if(A == 0x8D)
{
sweep_step = V;
sweep_counter = sweep_step + 1;
sweep_8192_divider = 8192;
}
else if(A == 0x8E)
{
//printf("NOISECONTROL: %02x\n", V);
if(V & 0x8)
nreg = 0;
noise_control = V & 0x17;
}
else if(A == 0x90)
{
for(int n = 0; n < 4; n++)
{
if(!(control & (1 << n)) && (V & (1 << n)))
{
period_counter[n] = 1;
sample_pos[n] = 0x1F;
}
}
control = V;
//printf("Sound Control: %02x\n", V);
}
else if(A == 0x91)
{
output_control = V & 0xF;
//printf("%02x, %02x\n", V, (V >> 1) & 3);
}
else if(A == 0x92)
nreg = (nreg & 0xFF00) | (V << 0);
else if(A == 0x93)
nreg = (nreg & 0x00FF) | ((V & 0x7F) << 8);
else if(A == 0x94)
{
voice_volume = V & 0xF;
//printf("%02x\n", V);
}
else switch(A)
{
case 0x6A: HVoiceCtrl = V; break;
case 0x6B: HVoiceChanCtrl = V & 0x6F; break;
case 0x8F: SampleRAMPos = V; break;
case 0x95: HyperVoice = V; break; // Pick a port, any port?!
//default: printf("%04x:%02x\n", A, V); break;
}
}
uint8_t WSwan::SoundRead(uint32_t A)
{
if(A >= 0x80 && A <= 0x87)
{
int ch = (A - 0x80) >> 1;
if(A & 1)
return(period[ch] >> 8);
else
return(period[ch]);
}
else if(A >= 0x88 && A <= 0x8B)
return(volume[A - 0x88]);
else switch(A)
{
default: /*printf("SoundRead: %04x\n", A);*/ return(0);
case 0x6A: return(HVoiceCtrl);
case 0x6B: return(HVoiceChanCtrl);
case 0x8C: return(sweep_value);
case 0x8D: return(sweep_step);
case 0x8E: return(noise_control);
case 0x8F: return(SampleRAMPos);
case 0x90: return(control);
case 0x91: return(output_control | 0x80);
case 0x92: return((nreg >> 0) & 0xFF);
case 0x93: return((nreg >> 8) & 0xFF);
case 0x94: return(voice_volume);
}
}
void WSwan::RAMWrite(uint32_t A, uint8_t V)
{
wsRAM[A & 0x3F] = V;
}
int32_t WSwan::SoundFlush(int16_t *SoundBuf, const int32_t MaxSoundFrames)
{
int32_t FrameCount = 0;
if(SoundBuf)
{
for(int y = 0; y < 2; y++)
{
// sbuf[y]->end_frame(v30mz_timestamp);
// FrameCount = sbuf[y]->read_samples(SoundBuf + y, MaxSoundFrames, true);
int32_t left = sbuf[0];
int32_t right = sbuf[1];
if (left >= 0x400) left = 0x3FF;
else if (left < -0x400) left = -0x400;
if (right >= 0x400) left = 0x3FF;
else if (right < -0x400) left = -0x400;
SoundBuf[0] = (int16_t)left << 5;
SoundBuf[1] = (int16_t)right << 5;
}
}
last_ts = 0;
return(FrameCount);
}
// Call before wsRAM is updated
// void WSwan::SoundCheckRAMWrite(uint32_t A)
// {
// if((A >> 6) == SampleRAMPos)
// SoundUpdate();
// }
// static void RedoVolume(void)
// {
// WaveSynth.volume(2.5);
// }
// void WSwan::SoundInit(void)
// {
// for(int i = 0; i < 2; i++)
// {
// sbuf[i] = new Blip_Buffer();
// sbuf[i]->set_sample_rate(0 ? 0 : 44100, 60);
// sbuf[i]->clock_rate((long)(3072000));
// sbuf[i]->bass_freq(20);
// }
// RedoVolume();
// }
// void WSwan::SoundKill(void)
// {
// for(int i = 0; i < 2; i++)
// {
// if(sbuf[i])
// {
// delete sbuf[i];
// sbuf[i] = NULL;
// }
// }
// }
// bool WSwan::SetSoundRate(uint32_t rate)
// {
// for(int i = 0; i < 2; i++)
// sbuf[i]->set_sample_rate(rate?rate:44100, 60);
// return(true);
// }
void WSwan::SoundReset(void)
{
memset(period, 0, sizeof(period));
memset(volume, 0, sizeof(volume));
voice_volume = 0;
sweep_step = 0;
sweep_value = 0;
noise_control = 0;
control = 0;
output_control = 0;
sweep_8192_divider = 8192;
sweep_counter = 1;
SampleRAMPos = 0;
for(unsigned ch = 0; ch < 4; ch++)
period_counter[ch] = 1;
memset(sample_pos, 0, sizeof(sample_pos));
nreg = 0;
memset(sample_cache, 0, sizeof(sample_cache));
// memset(last_val, 0, sizeof(last_val));
last_v_val = 0;
HyperVoice = 0;
last_hv_val[0] = last_hv_val[1] = 0;
HVoiceCtrl = 0;
HVoiceChanCtrl = 0;
for(int y = 0; y < 2; y++)
// sbuf[y]->clear();
sbuf[y] = 0;
last_ts = 0;
}