furnace/src/engine/platform/amiga.cpp

978 lines
26 KiB
C++

/**
* Furnace Tracker - multi-system chiptune tracker
* Copyright (C) 2021-2023 tildearrow and contributors
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/
#define _USE_MATH_DEFINES
#include "amiga.h"
#include "../engine.h"
#include "../../ta-log.h"
#include <math.h>
#define AMIGA_DIVIDER 8
#define AMIGA_VPMASK 7
#define CHIP_DIVIDER 16
#define chWrite(c,a,v) rWrite(((c)<<4)+0xa0+(a),(v));
const char* regCheatSheetAmiga[]={
"DMACON", "96",
"INTENA", "9A",
"ADKCON", "9E",
"AUD0LCH", "A0",
"AUD0LCL", "A2",
"AUD0LEN", "A4",
"AUD0PER", "A6",
"AUD0VOL", "A8",
"AUD0DAT", "AA",
"AUD1LCH", "B0",
"AUD1LCL", "B2",
"AUD1LEN", "B4",
"AUD1PER", "B6",
"AUD1VOL", "B8",
"AUD1DAT", "BA",
"AUD2LCH", "C0",
"AUD2LCL", "C2",
"AUD2LEN", "C4",
"AUD2PER", "C6",
"AUD2VOL", "C8",
"AUD2DAT", "CA",
"AUD3LCH", "D0",
"AUD3LCL", "D2",
"AUD3LEN", "D4",
"AUD3PER", "D6",
"AUD3VOL", "D8",
"AUD3DAT", "DA",
NULL
};
const char** DivPlatformAmiga::getRegisterSheet() {
return regCheatSheetAmiga;
}
#define writeAudDat(x) \
chan[i].audDat=x; \
if (i<3 && chan[i].useV) { \
chan[i+1].outVol=(unsigned char)chan[i].audDat^0x80; \
if (chan[i+1].outVol>64) chan[i+1].outVol=64; \
} \
if (i<3 && chan[i].useP) { \
chan[i+1].freq=(unsigned char)chan[i].audDat^0x80; \
if (chan[i+1].freq<AMIGA_DIVIDER) chan[i+1].freq=AMIGA_DIVIDER; \
}
void DivPlatformAmiga::acquire(short** buf, size_t len) {
static int outL, outR, output;
for (size_t h=0; h<len; h++) {
bool hsync=bypassLimits;
outL=0;
outR=0;
// TODO:
// - improve DMA overrun behavior
// - does V/P mod really work like that?
amiga.volPos=(amiga.volPos+1)&AMIGA_VPMASK;
if (!bypassLimits) {
amiga.hPos+=AMIGA_DIVIDER;
if (amiga.hPos>=228) {
amiga.hPos-=228;
hsync=true;
}
}
for (int i=0; i<4; i++) {
// run DMA
if (amiga.dmaEn && amiga.audEn[i] && !amiga.audIr[i]) {
amiga.audTick[i]-=AMIGA_DIVIDER;
if (amiga.audTick[i]<0) {
amiga.audTick[i]+=MAX(AMIGA_DIVIDER,amiga.audPer[i]);
if (amiga.audByte[i]) {
// read next samples
if (!amiga.incLoc[i]) {
amiga.audDat[0][i]=sampleMem[(amiga.dmaLoc[i])&chipMask];
amiga.audDat[1][i]=sampleMem[(amiga.dmaLoc[i]+1)&chipMask];
amiga.incLoc[i]=true;
}
amiga.audWord[i]=!amiga.audWord[i];
}
amiga.audByte[i]=!amiga.audByte[i];
if (!amiga.audByte[i] && (amiga.useV[i] || amiga.useP[i])) {
amiga.nextOut2[i]=((unsigned char)amiga.audDat[0][i])<<8|((unsigned char)amiga.audDat[1][i]);
if (i<3) {
if (amiga.useV[i] && amiga.useP[i]) {
if (amiga.audWord[i]) {
amiga.audPer[i+1]=amiga.nextOut2[i];
} else {
amiga.audVol[i+1]=amiga.nextOut2[i];
}
} else if (amiga.useV[i]) {
amiga.audVol[i+1]=amiga.nextOut2[i];
} else {
amiga.audPer[i+1]=amiga.nextOut2[i];
}
}
} else {
amiga.nextOut[i]=amiga.audDat[amiga.audByte[i]][i];
}
}
if (hsync) {
if (amiga.incLoc[i]) {
amiga.incLoc[i]=false;
amiga.dmaLoc[i]+=2;
// check for length
if ((--amiga.dmaLen[i])==0) {
if (amiga.audInt[i]) {
amiga.audIr[i]=true;
irq(i);
}
amiga.dmaLoc[i]=amiga.audLoc[i];
amiga.dmaLen[i]=amiga.audLen[i];
}
}
}
}
// output
if (!isMuted[i]) {
if (amiga.audVol[i]>=64) {
output=amiga.nextOut[i]<<6;
} else if (amiga.audVol[i]<=0) {
output=0;
} else {
output=amiga.nextOut[i]*volTable[amiga.audVol[i]][amiga.volPos];
}
if (i==0 || i==3) {
outL+=(output*sep1)>>7;
outR+=(output*sep2)>>7;
} else {
outL+=(output*sep2)>>7;
outR+=(output*sep1)>>7;
}
oscBuf[i]->data[oscBuf[i]->needle++]=(amiga.nextOut[i]*MIN(64,amiga.audVol[i]))<<1;
} else {
oscBuf[i]->data[oscBuf[i]->needle++]=0;
}
}
filter[0][0]+=(filtConst*(outL-filter[0][0]))>>12;
filter[0][1]+=(filtConst*(filter[0][0]-filter[0][1]))>>12;
filter[1][0]+=(filtConst*(outR-filter[1][0]))>>12;
filter[1][1]+=(filtConst*(filter[1][0]-filter[1][1]))>>12;
buf[0][h]=filter[0][1];
buf[1][h]=filter[1][1];
}
}
void DivPlatformAmiga::irq(int ch) {
// disable interrupt
rWrite(0x9a,128<<ch);
if (chan[ch].irLocL==0x400 && chan[ch].irLocH==0 && chan[ch].irLen==1) {
// turn off DMA
rWrite(0x96,1<<ch);
} else {
// write latched loc/len
chWrite(ch,0,chan[ch].irLocH);
chWrite(ch,2,chan[ch].irLocL);
chWrite(ch,4,chan[ch].irLen);
}
// acknowledge interrupt
rWrite(0x9c,128<<ch);
}
#define UPDATE_DMA(x) \
amiga.dmaLen[x]=amiga.audLen[x]; \
amiga.dmaLoc[x]=amiga.audLoc[x]; \
amiga.audByte[x]=true; \
amiga.audTick[x]=0;
void DivPlatformAmiga::rWrite(unsigned short addr, unsigned short val) {
if (addr&1) return;
//logV("%.3x = %.4x",addr,val);
regPool[addr>>1]=val;
if (!skipRegisterWrites && dumpWrites) {
addWrite(addr,val);
}
switch (addr&0x1fe) {
case 0x96: { // DMACON
if (val&32768) {
if (val&1) amiga.audEn[0]=true;
if (val&2) amiga.audEn[1]=true;
if (val&4) amiga.audEn[2]=true;
if (val&8) amiga.audEn[3]=true;
if (val&512) amiga.dmaEn=true;
} else {
if (val&1) {
amiga.audEn[0]=false;
UPDATE_DMA(0);
}
if (val&2) {
amiga.audEn[1]=false;
UPDATE_DMA(1);
}
if (val&4) {
amiga.audEn[2]=false;
UPDATE_DMA(2);
}
if (val&8) {
amiga.audEn[3]=false;
UPDATE_DMA(3);
}
if (val&512) {
amiga.dmaEn=false;
}
}
break;
}
case 0x9a: { // INTENA
if (val&32768) {
if (val&128) amiga.audInt[0]=true;
if (val&256) amiga.audInt[1]=true;
if (val&512) amiga.audInt[2]=true;
if (val&1024) amiga.audInt[3]=true;
} else {
if (val&128) amiga.audInt[0]=false;
if (val&256) amiga.audInt[1]=false;
if (val&512) amiga.audInt[2]=false;
if (val&1024) amiga.audInt[3]=false;
}
break;
}
case 0x9c: { // INTREQ
if (val&32768) {
if (val&128) {
amiga.audIr[0]=true;
irq(0);
}
if (val&256) {
amiga.audIr[1]=true;
irq(1);
}
if (val&512) {
amiga.audIr[2]=true;
irq(2);
}
if (val&1024) {
amiga.audIr[3]=true;
irq(3);
}
} else {
if (val&128) amiga.audIr[0]=false;
if (val&256) amiga.audIr[1]=false;
if (val&512) amiga.audIr[2]=false;
if (val&1024) amiga.audIr[3]=false;
}
break;
}
case 0x9e: { // ADKCON
if (val&32768) {
if (val&1) amiga.useV[0]=true;
if (val&2) amiga.useV[1]=true;
if (val&4) amiga.useV[2]=true;
if (val&8) amiga.useV[3]=true;
if (val&16) amiga.useP[0]=true;
if (val&32) amiga.useP[1]=true;
if (val&64) amiga.useP[2]=true;
if (val&128) amiga.useP[3]=true;
} else {
if (val&1) amiga.useV[0]=false;
if (val&2) amiga.useV[1]=false;
if (val&4) amiga.useV[2]=false;
if (val&8) amiga.useV[3]=false;
if (val&16) amiga.useP[0]=false;
if (val&32) amiga.useP[1]=false;
if (val&64) amiga.useP[2]=false;
if (val&128) amiga.useP[3]=false;
}
break;
}
default: { // AUDx
if (addr>=0xa0 && addr<0xe0) {
const unsigned char ch=((addr-0xa0)>>4)&3;
bool updateDMA=false;
switch (addr&15) {
case 0: // LCH
amiga.audLoc[ch]&=0xffff;
amiga.audLoc[ch]|=val<<16;
updateDMA=true;
break;
case 2: // LCL
amiga.audLoc[ch]&=0xffff0000;
amiga.audLoc[ch]|=val&0xfffe;
updateDMA=true;
break;
case 4: // LEN
amiga.audLen[ch]=val;
updateDMA=true;
break;
case 6: // PER
amiga.audPer[ch]=val;
break;
case 8: // VOL
amiga.audVol[ch]=val;
break;
case 10: // DAT
amiga.audDat[0][ch]=val&0xff;
amiga.audDat[1][ch]=val>>8;
break;
}
if (updateDMA && !amiga.audEn[ch]) {
UPDATE_DMA(ch);
}
}
break;
}
}
}
void DivPlatformAmiga::updateWave(int ch) {
for (int i=0; i<MIN(256,(chan[ch].audLen<<1)); i++) {
sampleMem[(ch<<8)|i]=chan[ch].ws.output[i]^0x80;
}
}
void DivPlatformAmiga::tick(bool sysTick) {
for (int i=0; i<4; i++) {
chan[i].std.next();
if (chan[i].std.vol.had) {
chan[i].outVol=((chan[i].vol%65)*MIN(64,chan[i].std.vol.val))>>6;
chan[i].writeVol=true;
}
double off=1.0;
if (!chan[i].useWave && chan[i].sample>=0 && chan[i].sample<parent->song.sampleLen) {
DivSample* s=parent->getSample(chan[i].sample);
if (s->centerRate<1) {
off=1.0;
} else {
off=8363.0/(double)s->centerRate;
}
}
if (NEW_ARP_STRAT) {
chan[i].handleArp();
} else if (chan[i].std.arp.had) {
// TODO: why the off mult? this may be a bug!
chan[i].baseFreq=round(off*NOTE_PERIODIC_NOROUND(parent->calcArp(chan[i].note,chan[i].std.arp.val)));
chan[i].freqChanged=true;
}
if (chan[i].useWave && chan[i].std.wave.had) {
if (chan[i].wave!=chan[i].std.wave.val || chan[i].ws.activeChanged()) {
chan[i].wave=chan[i].std.wave.val;
chan[i].ws.changeWave1(chan[i].wave);
chan[i].updateWave=true;
}
}
if (chan[i].useWave && chan[i].active) {
if (chan[i].ws.tick()) {
chan[i].updateWave=true;
}
}
if (chan[i].std.pitch.had) {
if (chan[i].std.pitch.mode) {
chan[i].pitch2+=chan[i].std.pitch.val;
CLAMP_VAR(chan[i].pitch2,-32768,32767);
} else {
chan[i].pitch2=chan[i].std.pitch.val;
}
chan[i].freqChanged=true;
}
if (chan[i].std.phaseReset.had) {
if (chan[i].std.phaseReset.val==1 && chan[i].active) {
chan[i].keyOn=true;
}
}
}
unsigned short dmaOff=0;
unsigned short dmaOn=0;
for (int i=0; i<4; i++) {
if (chan[i].keyOn || chan[i].keyOff) {
chWrite(i,6,1);
dmaOff|=1<<i;
}
}
if (dmaOff) rWrite(0x96,dmaOff);
for (int i=0; i<4; i++) {
double off=1.0;
if (!chan[i].useWave && chan[i].sample>=0 && chan[i].sample<parent->song.sampleLen) {
DivSample* s=parent->getSample(chan[i].sample);
if (s->centerRate<1) {
off=1.0;
} else {
off=8363.0/(double)s->centerRate;
}
}
if (chan[i].freqChanged || chan[i].keyOn || chan[i].keyOff) {
//DivInstrument* ins=parent->getIns(chan[i].ins,DIV_INS_AMIGA);
chan[i].freq=off*parent->calcFreq(chan[i].baseFreq,chan[i].pitch,chan[i].fixedArp?chan[i].baseNoteOverride:chan[i].arpOff,chan[i].fixedArp,true,0,chan[i].pitch2,chipClock,CHIP_DIVIDER);
if (chan[i].freq>4095) chan[i].freq=4095;
if (chan[i].freq<0) chan[i].freq=0;
chWrite(i,6,chan[i].freq);
if (chan[i].keyOn) {
if (chan[i].useWave) {
rWrite(0x9a,(128<<i));
chWrite(i,0,0);
chWrite(i,2,i<<8);
chWrite(i,4,chan[i].audLen);
if (dumpWrites) {
addWrite(0x200+i,i<<8);
addWrite(0x204+i,chan[i].audLen);
}
dmaOn|=1<<i;
} else {
if (chan[i].sample>=0 && chan[i].sample<parent->song.sampleLen) {
DivSample* s=parent->getSample(chan[i].sample);
int start=chan[i].audPos&(~1);
if (start>s->getLoopEndPosition(DIV_SAMPLE_DEPTH_8BIT)) start=s->getLoopEndPosition(DIV_SAMPLE_DEPTH_8BIT);
int len=s->getLoopEndPosition(DIV_SAMPLE_DEPTH_8BIT)-start;
if (len<0) len=0;
if (len>131070) len=131070;
len>>=1;
start+=sampleOff[chan[i].sample];
if (len<1) {
chWrite(i,0,0);
chWrite(i,2,0x400);
chWrite(i,4,1);
if (dumpWrites) {
addWrite(0x200+i,0x400);
addWrite(0x204+i,1);
}
} else {
chWrite(i,0,start>>16);
chWrite(i,2,start);
chWrite(i,4,len);
if (dumpWrites) {
addWrite(0x200+i,start);
addWrite(0x204+i,len);
}
}
dmaOn|=1<<i;
if (s->isLoopable()) {
int loopPos=(sampleOff[chan[i].sample]+s->getLoopStartPosition(DIV_SAMPLE_DEPTH_8BIT))&(~1);
int loopEnd=(s->getLoopEndPosition(DIV_SAMPLE_DEPTH_8BIT)-s->getLoopStartPosition(DIV_SAMPLE_DEPTH_8BIT))>>1;
chan[i].irLocH=loopPos>>16;
chan[i].irLocL=loopPos;
chan[i].irLen=MIN(65535,loopEnd);
} else {
chan[i].irLocH=0;
chan[i].irLocL=0x400;
chan[i].irLen=1;
}
rWrite(0x9a,0x8000|(128<<i));
} else {
chWrite(i,0,0);
chWrite(i,2,0x400);
chWrite(i,4,1);
if (dumpWrites) {
addWrite(0x200+i,0x400);
addWrite(0x204+i,1);
}
}
}
}
if (chan[i].keyOn) chan[i].keyOn=false;
if (chan[i].keyOff) chan[i].keyOff=false;
chan[i].freqChanged=false;
}
}
if (dmaOn) rWrite(0x96,0x8000|dmaOn);
for (int i=0; i<4; i++) {
if ((dmaOn&(1<<i)) && !chan[i].useWave && dumpWrites) {
addWrite(0x200+i,(chan[i].irLocH<<16)|chan[i].irLocL);
addWrite(0x204+i,chan[i].irLen);
}
}
for (int i=0; i<4; i++) {
if (chan[i].writeVol) {
chan[i].writeVol=false;
chWrite(i,8,chan[i].outVol);
}
if (chan[i].updateWave) {
chan[i].updateWave=false;
updateWave(i);
}
}
if (updateADKCon) {
updateADKCon=false;
rWrite(0x9e,0xff);
rWrite(0x9e,(
0x8000|
(chan[0].useV?1:0)|
(chan[1].useV?2:0)|
(chan[2].useV?4:0)|
(chan[3].useV?8:0)|
(chan[0].useP?16:0)|
(chan[1].useP?32:0)|
(chan[2].useP?64:0)|
(chan[3].useP?128:0)
));
}
}
int DivPlatformAmiga::dispatch(DivCommand c) {
switch (c.cmd) {
case DIV_CMD_NOTE_ON: {
DivInstrument* ins=parent->getIns(chan[c.chan].ins,DIV_INS_AMIGA);
if (ins->amiga.useWave) {
if (!chan[c.chan].useWave) chan[c.chan].updateWave=true;
chan[c.chan].useWave=true;
chan[c.chan].audLen=(ins->amiga.waveLen+1)>>1;
if (chan[c.chan].insChanged) {
if (chan[c.chan].wave<0) {
chan[c.chan].wave=0;
chan[c.chan].ws.setWidth(chan[c.chan].audLen<<1);
chan[c.chan].ws.changeWave1(chan[c.chan].wave);
chan[c.chan].updateWave=true;
}
}
} else {
if (c.value!=DIV_NOTE_NULL) {
chan[c.chan].sample=ins->amiga.getSample(c.value);
c.value=ins->amiga.getFreq(c.value);
}
chan[c.chan].useWave=false;
}
if (c.value!=DIV_NOTE_NULL) {
chan[c.chan].baseFreq=round(NOTE_PERIODIC_NOROUND(c.value));
}
if (chan[c.chan].useWave || chan[c.chan].sample<0 || chan[c.chan].sample>=parent->song.sampleLen) {
chan[c.chan].sample=-1;
}
if (chan[c.chan].setPos) {
chan[c.chan].setPos=false;
} else {
chan[c.chan].audPos=0;
}
chan[c.chan].audSub=0;
if (c.value!=DIV_NOTE_NULL) {
chan[c.chan].freqChanged=true;
chan[c.chan].note=c.value;
}
chan[c.chan].active=true;
chan[c.chan].keyOn=true;
chan[c.chan].macroInit(ins);
if (!parent->song.brokenOutVol && !chan[c.chan].std.vol.will) {
chan[c.chan].outVol=chan[c.chan].vol;
chan[c.chan].writeVol=true;
}
if (chan[c.chan].useWave) {
chan[c.chan].ws.init(ins,chan[c.chan].audLen<<1,255,chan[c.chan].insChanged);
chan[c.chan].updateWave=true;
}
chan[c.chan].insChanged=false;
break;
}
case DIV_CMD_NOTE_OFF:
chan[c.chan].sample=-1;
chan[c.chan].active=false;
chan[c.chan].keyOff=true;
chan[c.chan].macroInit(NULL);
break;
case DIV_CMD_NOTE_OFF_ENV:
case DIV_CMD_ENV_RELEASE:
chan[c.chan].std.release();
break;
case DIV_CMD_INSTRUMENT:
if (chan[c.chan].ins!=c.value || c.value2==1) {
chan[c.chan].ins=c.value;
chan[c.chan].insChanged=true;
}
break;
case DIV_CMD_VOLUME:
if (chan[c.chan].vol!=c.value) {
chan[c.chan].vol=c.value;
if (!chan[c.chan].std.vol.has) {
chan[c.chan].outVol=c.value;
chan[c.chan].writeVol=true;
}
}
break;
case DIV_CMD_GET_VOLUME:
if (chan[c.chan].std.vol.has) {
return chan[c.chan].vol;
}
return chan[c.chan].outVol;
break;
case DIV_CMD_PITCH:
chan[c.chan].pitch=c.value;
chan[c.chan].freqChanged=true;
break;
case DIV_CMD_WAVE:
if (!chan[c.chan].useWave) break;
chan[c.chan].wave=c.value;
chan[c.chan].keyOn=true;
chan[c.chan].ws.changeWave1(chan[c.chan].wave);
chan[c.chan].updateWave=true;
break;
case DIV_CMD_NOTE_PORTA: {
DivInstrument* ins=parent->getIns(chan[c.chan].ins,DIV_INS_AMIGA);
chan[c.chan].sample=ins->amiga.getSample(c.value2);
int destFreq=round(NOTE_PERIODIC_NOROUND(c.value2));
bool return2=false;
if (destFreq>chan[c.chan].baseFreq) {
chan[c.chan].baseFreq+=c.value;
if (chan[c.chan].baseFreq>=destFreq) {
chan[c.chan].baseFreq=destFreq;
return2=true;
}
} else {
chan[c.chan].baseFreq-=c.value;
if (chan[c.chan].baseFreq<=destFreq) {
chan[c.chan].baseFreq=destFreq;
return2=true;
}
}
chan[c.chan].freqChanged=true;
if (return2) {
chan[c.chan].inPorta=false;
return 2;
}
break;
}
case DIV_CMD_LEGATO: {
chan[c.chan].baseFreq=round(NOTE_PERIODIC_NOROUND(c.value+((HACKY_LEGATO_MESS)?(chan[c.chan].std.arp.val):(0))));
chan[c.chan].freqChanged=true;
chan[c.chan].note=c.value;
break;
}
case DIV_CMD_PRE_PORTA:
if (chan[c.chan].active && c.value2) {
if (parent->song.resetMacroOnPorta) chan[c.chan].macroInit(parent->getIns(chan[c.chan].ins,DIV_INS_AMIGA));
}
if (!chan[c.chan].inPorta && c.value && !parent->song.brokenPortaArp && chan[c.chan].std.arp.will && !NEW_ARP_STRAT) chan[c.chan].baseFreq=NOTE_PERIODIC(chan[c.chan].note);
chan[c.chan].inPorta=c.value;
break;
case DIV_CMD_SAMPLE_POS:
if (chan[c.chan].useWave) break;
chan[c.chan].audPos=c.value;
if (chan[c.chan].active) chan[c.chan].keyOn=true;
chan[c.chan].setPos=true;
break;
case DIV_CMD_AMIGA_FILTER:
filterOn=c.value;
filtConst=filterOn?filtConstOn:filtConstOff;
break;
case DIV_CMD_AMIGA_AM:
chan[c.chan].useV=c.value;
updateADKCon=true;
break;
case DIV_CMD_AMIGA_PM:
chan[c.chan].useP=c.value;
updateADKCon=true;
break;
case DIV_CMD_GET_VOLMAX:
return 64;
break;
case DIV_CMD_MACRO_OFF:
chan[c.chan].std.mask(c.value,true);
break;
case DIV_CMD_MACRO_ON:
chan[c.chan].std.mask(c.value,false);
break;
case DIV_ALWAYS_SET_VOLUME:
return 1;
break;
default:
break;
}
return 1;
}
void DivPlatformAmiga::muteChannel(int ch, bool mute) {
isMuted[ch]=mute;
}
void DivPlatformAmiga::forceIns() {
for (int i=0; i<4; i++) {
chan[i].insChanged=true;
chan[i].freqChanged=true;
/*chan[i].keyOn=false;
chan[i].keyOff=false;
chan[i].sample=-1;*/
if (!chan[i].useWave) {
rWrite(0x96,1<<i);
}
}
}
void* DivPlatformAmiga::getChanState(int ch) {
return &chan[ch];
}
DivDispatchOscBuffer* DivPlatformAmiga::getOscBuffer(int ch) {
return oscBuf[ch];
}
void DivPlatformAmiga::reset() {
memset(regPool,0,256*sizeof(unsigned short));
for (int i=0; i<4; i++) {
chan[i]=DivPlatformAmiga::Channel();
chan[i].std.setEngine(parent);
chan[i].ws.setEngine(parent);
chan[i].ws.init(NULL,32,255);
filter[0][i]=0;
filter[1][i]=0;
}
filterOn=false;
filtConst=filterOn?filtConstOn:filtConstOff;
updateADKCon=true;
amiga=Amiga();
// enable DMA
rWrite(0x96,0x8200);
}
int DivPlatformAmiga::getOutputCount() {
return 2;
}
bool DivPlatformAmiga::keyOffAffectsArp(int ch) {
return true;
}
DivMacroInt* DivPlatformAmiga::getChanMacroInt(int ch) {
return &chan[ch].std;
}
DivSamplePos DivPlatformAmiga::getSamplePos(int ch) {
if (ch>=4) return DivSamplePos();
if (chan[ch].sample<0 || chan[ch].sample>=parent->song.sampleLen) return DivSamplePos();
int audPer=amiga.audPer[ch];
if (audPer<1) audPer=1;
return DivSamplePos(
chan[ch].sample,
amiga.dmaLoc[ch]-sampleOff[chan[ch].sample],
chipClock/audPer
);
}
void DivPlatformAmiga::notifyInsChange(int ins) {
for (int i=0; i<4; i++) {
if (chan[i].ins==ins) {
chan[i].insChanged=true;
}
}
}
void DivPlatformAmiga::notifyWaveChange(int wave) {
for (int i=0; i<4; i++) {
if (chan[i].useWave && chan[i].wave==wave) {
chan[i].ws.changeWave1(wave);
chan[i].updateWave=true;
}
}
}
void DivPlatformAmiga::notifyInsDeletion(void* ins) {
for (int i=0; i<4; i++) {
chan[i].std.notifyInsDeletion((DivInstrument*)ins);
}
}
void DivPlatformAmiga::setFlags(const DivConfig& flags) {
if (flags.getInt("clockSel",0)) {
chipClock=COLOR_PAL*4.0/5.0;
} else {
chipClock=COLOR_NTSC;
}
rate=chipClock/AMIGA_DIVIDER;
for (int i=0; i<4; i++) {
oscBuf[i]->rate=rate;
}
int sep=flags.getInt("stereoSep",0)&127;
sep1=sep+127;
sep2=127-sep;
amigaModel=flags.getInt("chipType",0);
chipMem=flags.getInt("chipMem",21);
if (chipMem<18) chipMem=18;
if (chipMem>21) chipMem=21;
chipMask=(1<<chipMem)-1;
bypassLimits=flags.getBool("bypassLimits",false);
if (amigaModel) {
filtConstOff=4000;
filtConstOn=sin(M_PI*8000.0/(double)rate)*4096.0;
} else {
filtConstOff=sin(M_PI*16000.0/(double)rate)*4096.0;
filtConstOn=sin(M_PI*5500.0/(double)rate)*4096.0;
}
}
void DivPlatformAmiga::poke(unsigned int addr, unsigned short val) {
rWrite(addr,val);
}
void DivPlatformAmiga::poke(std::vector<DivRegWrite>& wlist) {
for (DivRegWrite& i: wlist) rWrite(i.addr,i.val);
}
unsigned char* DivPlatformAmiga::getRegisterPool() {
// update DMACONR
regPool[1]=(
(amiga.audEn[0]?1:0)|
(amiga.audEn[1]?2:0)|
(amiga.audEn[2]?4:0)|
(amiga.audEn[3]?8:0)|
(amiga.dmaEn?512:0)
);
// update ADKCONR
regPool[0x10>>1]=(
(amiga.useV[0]?1:0)|
(amiga.useV[1]?2:0)|
(amiga.useV[2]?4:0)|
(amiga.useV[3]?8:0)|
(amiga.useP[0]?16:0)|
(amiga.useP[1]?32:0)|
(amiga.useP[2]?64:0)|
(amiga.useP[3]?128:0)
);
// update INTENAR
regPool[0x1c>>1]=(
(amiga.audInt[0]?128:0)|
(amiga.audInt[1]?256:0)|
(amiga.audInt[2]?512:0)|
(amiga.audInt[3]?1024:0)|
16384 // INTEN
);
// update INTREQR
regPool[0x1e>>1]=(
(amiga.audIr[0]?128:0)|
(amiga.audIr[1]?256:0)|
(amiga.audIr[2]?512:0)|
(amiga.audIr[3]?1024:0)
);
return (unsigned char*)regPool;
}
int DivPlatformAmiga::getRegisterPoolSize() {
return 128;
}
int DivPlatformAmiga::getRegisterPoolDepth() {
return 16;
}
const void* DivPlatformAmiga::getSampleMem(int index) {
return index == 0 ? sampleMem : NULL;
}
size_t DivPlatformAmiga::getSampleMemCapacity(int index) {
return index == 0 ? (1<<chipMem) : 0;
}
size_t DivPlatformAmiga::getSampleMemUsage(int index) {
return index == 0 ? sampleMemLen : 0;
}
bool DivPlatformAmiga::isSampleLoaded(int index, int sample) {
if (index!=0) return false;
if (sample<0 || sample>255) return false;
return sampleLoaded[sample];
}
void DivPlatformAmiga::renderSamples(int sysID) {
memset(sampleMem,0,2097152);
memset(sampleOff,0,256*sizeof(unsigned int));
memset(sampleLoaded,0,256*sizeof(bool));
// first 1024 bytes reserved for wavetable
// the next 2 bytes are reserved for end of sample
size_t memPos=1026;
for (int i=0; i<parent->song.sampleLen; i++) {
DivSample* s=parent->song.sample[i];
if (!s->renderOn[0][sysID]) {
sampleOff[i]=0;
continue;
}
if (memPos>=getSampleMemCapacity()) {
logW("out of Amiga memory for sample %d!",i);
break;
}
int length=s->getLoopEndPosition(DIV_SAMPLE_DEPTH_8BIT);
int actualLength=MIN((int)(getSampleMemCapacity()-memPos),length);
if (actualLength>0) {
sampleOff[i]=memPos;
memcpy(&sampleMem[memPos],s->data8,actualLength);
memPos+=actualLength;
}
// align memPos to short
if (memPos&1) memPos++;
sampleLoaded[i]=true;
}
sampleMemLen=memPos;
}
int DivPlatformAmiga::init(DivEngine* p, int channels, int sugRate, const DivConfig& flags) {
parent=p;
dumpWrites=false;
skipRegisterWrites=false;
for (int i=0; i<4; i++) {
oscBuf[i]=new DivDispatchOscBuffer;
isMuted[i]=false;
}
// Paula volume is implemented using PWM rather than a multiplication.
// sources:
// - https://www.youtube.com/watch?v=xyQlmsD7PAg
// - https://linusakesson.net/music/paulimba/index.php
memset(volTable,0,64*64);
for (int i=0; i<64; i++) {
for (int j=0; j<64; j++) {
volTable[i][j/AMIGA_DIVIDER]+=(j<i)*(64/AMIGA_DIVIDER);
}
}
sampleMem=new unsigned char[2097152];
sampleMemLen=0;
setFlags(flags);
reset();
return 6;
}
void DivPlatformAmiga::quit() {
delete[] sampleMem;
for (int i=0; i<4; i++) {
delete oscBuf[i];
}
}