mirror of
https://github.com/tildearrow/furnace.git
synced 2024-12-20 07:20:43 +00:00
54e93db207
not reliable yet
309 lines
12 KiB
C
309 lines
12 KiB
C
/*
|
|
* Copyright (c) 2003, 2007-14 Matteo Frigo
|
|
* Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
|
*
|
|
*/
|
|
|
|
/* This file was automatically generated --- DO NOT EDIT */
|
|
/* Generated on Tue Sep 14 10:45:04 EDT 2021 */
|
|
|
|
#include "dft/codelet-dft.h"
|
|
|
|
#if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
|
|
|
|
/* Generated by: ../../../genfft/gen_notw_c.native -fma -simd -compact -variables 4 -pipeline-latency 8 -sign 1 -n 14 -name n1bv_14 -include dft/simd/n1b.h */
|
|
|
|
/*
|
|
* This function contains 74 FP additions, 48 FP multiplications,
|
|
* (or, 32 additions, 6 multiplications, 42 fused multiply/add),
|
|
* 51 stack variables, 6 constants, and 28 memory accesses
|
|
*/
|
|
#include "dft/simd/n1b.h"
|
|
|
|
static void n1bv_14(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs)
|
|
{
|
|
DVK(KP801937735, +0.801937735804838252472204639014890102331838324);
|
|
DVK(KP974927912, +0.974927912181823607018131682993931217232785801);
|
|
DVK(KP554958132, +0.554958132087371191422194871006410481067288862);
|
|
DVK(KP900968867, +0.900968867902419126236102319507445051165919162);
|
|
DVK(KP692021471, +0.692021471630095869627814897002069140197260599);
|
|
DVK(KP356895867, +0.356895867892209443894399510021300583399127187);
|
|
{
|
|
INT i;
|
|
const R *xi;
|
|
R *xo;
|
|
xi = ii;
|
|
xo = io;
|
|
for (i = v; i > 0; i = i - VL, xi = xi + (VL * ivs), xo = xo + (VL * ovs), MAKE_VOLATILE_STRIDE(28, is), MAKE_VOLATILE_STRIDE(28, os)) {
|
|
V T3, TH, Ts, TV, TW, Tt, Tu, TU, Ta, To, Th, Tp, TC, Tx, TK;
|
|
V TQ, TN, TR, T14, TZ, T1, T2;
|
|
T1 = LD(&(xi[0]), ivs, &(xi[0]));
|
|
T2 = LD(&(xi[WS(is, 7)]), ivs, &(xi[WS(is, 1)]));
|
|
T3 = VSUB(T1, T2);
|
|
TH = VADD(T1, T2);
|
|
{
|
|
V T6, TI, T9, TJ, Tn, TP, Tk, TO, Tg, TM, Td, TL;
|
|
{
|
|
V T4, T5, Ti, Tj;
|
|
T4 = LD(&(xi[WS(is, 2)]), ivs, &(xi[0]));
|
|
T5 = LD(&(xi[WS(is, 9)]), ivs, &(xi[WS(is, 1)]));
|
|
T6 = VSUB(T4, T5);
|
|
TI = VADD(T4, T5);
|
|
{
|
|
V T7, T8, Tl, Tm;
|
|
T7 = LD(&(xi[WS(is, 12)]), ivs, &(xi[0]));
|
|
T8 = LD(&(xi[WS(is, 5)]), ivs, &(xi[WS(is, 1)]));
|
|
T9 = VSUB(T7, T8);
|
|
TJ = VADD(T7, T8);
|
|
Tl = LD(&(xi[WS(is, 8)]), ivs, &(xi[0]));
|
|
Tm = LD(&(xi[WS(is, 1)]), ivs, &(xi[WS(is, 1)]));
|
|
Tn = VSUB(Tl, Tm);
|
|
TP = VADD(Tl, Tm);
|
|
}
|
|
Ti = LD(&(xi[WS(is, 6)]), ivs, &(xi[0]));
|
|
Tj = LD(&(xi[WS(is, 13)]), ivs, &(xi[WS(is, 1)]));
|
|
Tk = VSUB(Ti, Tj);
|
|
TO = VADD(Ti, Tj);
|
|
{
|
|
V Te, Tf, Tb, Tc;
|
|
Te = LD(&(xi[WS(is, 10)]), ivs, &(xi[0]));
|
|
Tf = LD(&(xi[WS(is, 3)]), ivs, &(xi[WS(is, 1)]));
|
|
Tg = VSUB(Te, Tf);
|
|
TM = VADD(Te, Tf);
|
|
Tb = LD(&(xi[WS(is, 4)]), ivs, &(xi[0]));
|
|
Tc = LD(&(xi[WS(is, 11)]), ivs, &(xi[WS(is, 1)]));
|
|
Td = VSUB(Tb, Tc);
|
|
TL = VADD(Tb, Tc);
|
|
}
|
|
}
|
|
Ts = VSUB(Tk, Tn);
|
|
TV = VSUB(TP, TO);
|
|
TW = VSUB(TM, TL);
|
|
Tt = VSUB(Td, Tg);
|
|
Tu = VSUB(T6, T9);
|
|
TU = VSUB(TI, TJ);
|
|
Ta = VADD(T6, T9);
|
|
To = VADD(Tk, Tn);
|
|
Th = VADD(Td, Tg);
|
|
Tp = VFNMS(LDK(KP356895867), To, Th);
|
|
TC = VFNMS(LDK(KP356895867), Th, Ta);
|
|
Tx = VFNMS(LDK(KP356895867), Ta, To);
|
|
TK = VADD(TI, TJ);
|
|
TQ = VADD(TO, TP);
|
|
TN = VADD(TL, TM);
|
|
TR = VFNMS(LDK(KP356895867), TK, TQ);
|
|
T14 = VFNMS(LDK(KP356895867), TQ, TN);
|
|
TZ = VFNMS(LDK(KP356895867), TN, TK);
|
|
}
|
|
ST(&(xo[WS(os, 7)]), VADD(T3, VADD(Ta, VADD(Th, To))), ovs, &(xo[WS(os, 1)]));
|
|
ST(&(xo[0]), VADD(TH, VADD(TK, VADD(TN, TQ))), ovs, &(xo[0]));
|
|
{
|
|
V Tr, Tw, Tq, Tv;
|
|
Tq = VFNMS(LDK(KP692021471), Tp, Ta);
|
|
Tr = VFNMS(LDK(KP900968867), Tq, T3);
|
|
Tv = VFNMS(LDK(KP554958132), Tu, Tt);
|
|
Tw = VMUL(LDK(KP974927912), VFNMS(LDK(KP801937735), Tv, Ts));
|
|
ST(&(xo[WS(os, 3)]), VFMAI(Tw, Tr), ovs, &(xo[WS(os, 1)]));
|
|
ST(&(xo[WS(os, 11)]), VFNMSI(Tw, Tr), ovs, &(xo[WS(os, 1)]));
|
|
}
|
|
{
|
|
V T16, T18, T15, T17;
|
|
T15 = VFNMS(LDK(KP692021471), T14, TK);
|
|
T16 = VFNMS(LDK(KP900968867), T15, TH);
|
|
T17 = VFMA(LDK(KP554958132), TU, TW);
|
|
T18 = VMUL(LDK(KP974927912), VFNMS(LDK(KP801937735), T17, TV));
|
|
ST(&(xo[WS(os, 10)]), VFNMSI(T18, T16), ovs, &(xo[0]));
|
|
ST(&(xo[WS(os, 4)]), VFMAI(T18, T16), ovs, &(xo[0]));
|
|
}
|
|
{
|
|
V Tz, TB, Ty, TA;
|
|
Ty = VFNMS(LDK(KP692021471), Tx, Th);
|
|
Tz = VFNMS(LDK(KP900968867), Ty, T3);
|
|
TA = VFMA(LDK(KP554958132), Tt, Ts);
|
|
TB = VMUL(LDK(KP974927912), VFNMS(LDK(KP801937735), TA, Tu));
|
|
ST(&(xo[WS(os, 5)]), VFNMSI(TB, Tz), ovs, &(xo[WS(os, 1)]));
|
|
ST(&(xo[WS(os, 9)]), VFMAI(TB, Tz), ovs, &(xo[WS(os, 1)]));
|
|
}
|
|
{
|
|
V TT, TY, TS, TX;
|
|
TS = VFNMS(LDK(KP692021471), TR, TN);
|
|
TT = VFNMS(LDK(KP900968867), TS, TH);
|
|
TX = VFMA(LDK(KP554958132), TW, TV);
|
|
TY = VMUL(LDK(KP974927912), VFMA(LDK(KP801937735), TX, TU));
|
|
ST(&(xo[WS(os, 12)]), VFNMSI(TY, TT), ovs, &(xo[0]));
|
|
ST(&(xo[WS(os, 2)]), VFMAI(TY, TT), ovs, &(xo[0]));
|
|
}
|
|
{
|
|
V T11, T13, T10, T12;
|
|
T10 = VFNMS(LDK(KP692021471), TZ, TQ);
|
|
T11 = VFNMS(LDK(KP900968867), T10, TH);
|
|
T12 = VFNMS(LDK(KP554958132), TV, TU);
|
|
T13 = VMUL(LDK(KP974927912), VFNMS(LDK(KP801937735), T12, TW));
|
|
ST(&(xo[WS(os, 8)]), VFNMSI(T13, T11), ovs, &(xo[0]));
|
|
ST(&(xo[WS(os, 6)]), VFMAI(T13, T11), ovs, &(xo[0]));
|
|
}
|
|
{
|
|
V TE, TG, TD, TF;
|
|
TD = VFNMS(LDK(KP692021471), TC, To);
|
|
TE = VFNMS(LDK(KP900968867), TD, T3);
|
|
TF = VFMA(LDK(KP554958132), Ts, Tu);
|
|
TG = VMUL(LDK(KP974927912), VFMA(LDK(KP801937735), TF, Tt));
|
|
ST(&(xo[WS(os, 1)]), VFMAI(TG, TE), ovs, &(xo[WS(os, 1)]));
|
|
ST(&(xo[WS(os, 13)]), VFNMSI(TG, TE), ovs, &(xo[WS(os, 1)]));
|
|
}
|
|
}
|
|
}
|
|
VLEAVE();
|
|
}
|
|
|
|
static const kdft_desc desc = { 14, XSIMD_STRING("n1bv_14"), { 32, 6, 42, 0 }, &GENUS, 0, 0, 0, 0 };
|
|
|
|
void XSIMD(codelet_n1bv_14) (planner *p) { X(kdft_register) (p, n1bv_14, &desc);
|
|
}
|
|
|
|
#else
|
|
|
|
/* Generated by: ../../../genfft/gen_notw_c.native -simd -compact -variables 4 -pipeline-latency 8 -sign 1 -n 14 -name n1bv_14 -include dft/simd/n1b.h */
|
|
|
|
/*
|
|
* This function contains 74 FP additions, 36 FP multiplications,
|
|
* (or, 50 additions, 12 multiplications, 24 fused multiply/add),
|
|
* 33 stack variables, 6 constants, and 28 memory accesses
|
|
*/
|
|
#include "dft/simd/n1b.h"
|
|
|
|
static void n1bv_14(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs)
|
|
{
|
|
DVK(KP900968867, +0.900968867902419126236102319507445051165919162);
|
|
DVK(KP222520933, +0.222520933956314404288902564496794759466355569);
|
|
DVK(KP623489801, +0.623489801858733530525004884004239810632274731);
|
|
DVK(KP781831482, +0.781831482468029808708444526674057750232334519);
|
|
DVK(KP974927912, +0.974927912181823607018131682993931217232785801);
|
|
DVK(KP433883739, +0.433883739117558120475768332848358754609990728);
|
|
{
|
|
INT i;
|
|
const R *xi;
|
|
R *xo;
|
|
xi = ii;
|
|
xo = io;
|
|
for (i = v; i > 0; i = i - VL, xi = xi + (VL * ivs), xo = xo + (VL * ovs), MAKE_VOLATILE_STRIDE(28, is), MAKE_VOLATILE_STRIDE(28, os)) {
|
|
V Tp, Ty, Tl, TL, Tq, TE, T7, TJ, Ts, TB, Te, TK, Tr, TH, Tn;
|
|
V To;
|
|
Tn = LD(&(xi[0]), ivs, &(xi[0]));
|
|
To = LD(&(xi[WS(is, 7)]), ivs, &(xi[WS(is, 1)]));
|
|
Tp = VSUB(Tn, To);
|
|
Ty = VADD(Tn, To);
|
|
{
|
|
V Th, TC, Tk, TD;
|
|
{
|
|
V Tf, Tg, Ti, Tj;
|
|
Tf = LD(&(xi[WS(is, 4)]), ivs, &(xi[0]));
|
|
Tg = LD(&(xi[WS(is, 11)]), ivs, &(xi[WS(is, 1)]));
|
|
Th = VSUB(Tf, Tg);
|
|
TC = VADD(Tf, Tg);
|
|
Ti = LD(&(xi[WS(is, 10)]), ivs, &(xi[0]));
|
|
Tj = LD(&(xi[WS(is, 3)]), ivs, &(xi[WS(is, 1)]));
|
|
Tk = VSUB(Ti, Tj);
|
|
TD = VADD(Ti, Tj);
|
|
}
|
|
Tl = VSUB(Th, Tk);
|
|
TL = VSUB(TD, TC);
|
|
Tq = VADD(Th, Tk);
|
|
TE = VADD(TC, TD);
|
|
}
|
|
{
|
|
V T3, Tz, T6, TA;
|
|
{
|
|
V T1, T2, T4, T5;
|
|
T1 = LD(&(xi[WS(is, 2)]), ivs, &(xi[0]));
|
|
T2 = LD(&(xi[WS(is, 9)]), ivs, &(xi[WS(is, 1)]));
|
|
T3 = VSUB(T1, T2);
|
|
Tz = VADD(T1, T2);
|
|
T4 = LD(&(xi[WS(is, 12)]), ivs, &(xi[0]));
|
|
T5 = LD(&(xi[WS(is, 5)]), ivs, &(xi[WS(is, 1)]));
|
|
T6 = VSUB(T4, T5);
|
|
TA = VADD(T4, T5);
|
|
}
|
|
T7 = VSUB(T3, T6);
|
|
TJ = VSUB(Tz, TA);
|
|
Ts = VADD(T3, T6);
|
|
TB = VADD(Tz, TA);
|
|
}
|
|
{
|
|
V Ta, TF, Td, TG;
|
|
{
|
|
V T8, T9, Tb, Tc;
|
|
T8 = LD(&(xi[WS(is, 6)]), ivs, &(xi[0]));
|
|
T9 = LD(&(xi[WS(is, 13)]), ivs, &(xi[WS(is, 1)]));
|
|
Ta = VSUB(T8, T9);
|
|
TF = VADD(T8, T9);
|
|
Tb = LD(&(xi[WS(is, 8)]), ivs, &(xi[0]));
|
|
Tc = LD(&(xi[WS(is, 1)]), ivs, &(xi[WS(is, 1)]));
|
|
Td = VSUB(Tb, Tc);
|
|
TG = VADD(Tb, Tc);
|
|
}
|
|
Te = VSUB(Ta, Td);
|
|
TK = VSUB(TG, TF);
|
|
Tr = VADD(Ta, Td);
|
|
TH = VADD(TF, TG);
|
|
}
|
|
ST(&(xo[WS(os, 7)]), VADD(Tp, VADD(Ts, VADD(Tq, Tr))), ovs, &(xo[WS(os, 1)]));
|
|
ST(&(xo[0]), VADD(Ty, VADD(TB, VADD(TE, TH))), ovs, &(xo[0]));
|
|
{
|
|
V Tm, Tt, TQ, TP;
|
|
Tm = VBYI(VFMA(LDK(KP433883739), T7, VFNMS(LDK(KP781831482), Tl, VMUL(LDK(KP974927912), Te))));
|
|
Tt = VFMA(LDK(KP623489801), Tq, VFNMS(LDK(KP222520933), Tr, VFNMS(LDK(KP900968867), Ts, Tp)));
|
|
ST(&(xo[WS(os, 3)]), VADD(Tm, Tt), ovs, &(xo[WS(os, 1)]));
|
|
ST(&(xo[WS(os, 11)]), VSUB(Tt, Tm), ovs, &(xo[WS(os, 1)]));
|
|
TQ = VBYI(VFMA(LDK(KP974927912), TJ, VFMA(LDK(KP433883739), TL, VMUL(LDK(KP781831482), TK))));
|
|
TP = VFMA(LDK(KP623489801), TH, VFNMS(LDK(KP900968867), TE, VFNMS(LDK(KP222520933), TB, Ty)));
|
|
ST(&(xo[WS(os, 12)]), VSUB(TP, TQ), ovs, &(xo[0]));
|
|
ST(&(xo[WS(os, 2)]), VADD(TP, TQ), ovs, &(xo[0]));
|
|
}
|
|
{
|
|
V Tu, Tv, TM, TI;
|
|
Tu = VBYI(VFMA(LDK(KP781831482), T7, VFMA(LDK(KP974927912), Tl, VMUL(LDK(KP433883739), Te))));
|
|
Tv = VFMA(LDK(KP623489801), Ts, VFNMS(LDK(KP900968867), Tr, VFNMS(LDK(KP222520933), Tq, Tp)));
|
|
ST(&(xo[WS(os, 1)]), VADD(Tu, Tv), ovs, &(xo[WS(os, 1)]));
|
|
ST(&(xo[WS(os, 13)]), VSUB(Tv, Tu), ovs, &(xo[WS(os, 1)]));
|
|
TM = VBYI(VFNMS(LDK(KP433883739), TK, VFNMS(LDK(KP974927912), TL, VMUL(LDK(KP781831482), TJ))));
|
|
TI = VFMA(LDK(KP623489801), TB, VFNMS(LDK(KP900968867), TH, VFNMS(LDK(KP222520933), TE, Ty)));
|
|
ST(&(xo[WS(os, 6)]), VSUB(TI, TM), ovs, &(xo[0]));
|
|
ST(&(xo[WS(os, 8)]), VADD(TI, TM), ovs, &(xo[0]));
|
|
}
|
|
{
|
|
V TO, TN, Tx, Tw;
|
|
TO = VBYI(VFMA(LDK(KP433883739), TJ, VFNMS(LDK(KP974927912), TK, VMUL(LDK(KP781831482), TL))));
|
|
TN = VFMA(LDK(KP623489801), TE, VFNMS(LDK(KP222520933), TH, VFNMS(LDK(KP900968867), TB, Ty)));
|
|
ST(&(xo[WS(os, 4)]), VSUB(TN, TO), ovs, &(xo[0]));
|
|
ST(&(xo[WS(os, 10)]), VADD(TN, TO), ovs, &(xo[0]));
|
|
Tx = VBYI(VFNMS(LDK(KP781831482), Te, VFNMS(LDK(KP433883739), Tl, VMUL(LDK(KP974927912), T7))));
|
|
Tw = VFMA(LDK(KP623489801), Tr, VFNMS(LDK(KP900968867), Tq, VFNMS(LDK(KP222520933), Ts, Tp)));
|
|
ST(&(xo[WS(os, 5)]), VSUB(Tw, Tx), ovs, &(xo[WS(os, 1)]));
|
|
ST(&(xo[WS(os, 9)]), VADD(Tx, Tw), ovs, &(xo[WS(os, 1)]));
|
|
}
|
|
}
|
|
}
|
|
VLEAVE();
|
|
}
|
|
|
|
static const kdft_desc desc = { 14, XSIMD_STRING("n1bv_14"), { 50, 12, 24, 0 }, &GENUS, 0, 0, 0, 0 };
|
|
|
|
void XSIMD(codelet_n1bv_14) (planner *p) { X(kdft_register) (p, n1bv_14, &desc);
|
|
}
|
|
|
|
#endif
|