mirror of
https://github.com/tildearrow/furnace.git
synced 2024-12-05 02:37:26 +00:00
54e93db207
not reliable yet
376 lines
9.1 KiB
C
376 lines
9.1 KiB
C
/*
|
|
* Copyright (c) 2003, 2007-14 Matteo Frigo
|
|
* Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
|
*
|
|
*/
|
|
|
|
/* This file was automatically generated --- DO NOT EDIT */
|
|
/* Generated on Tue Sep 14 10:44:27 EDT 2021 */
|
|
|
|
#include "dft/codelet-dft.h"
|
|
|
|
#if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
|
|
|
|
/* Generated by: ../../../genfft/gen_twiddle.native -fma -compact -variables 4 -pipeline-latency 4 -n 8 -name t1_8 -include dft/scalar/t.h */
|
|
|
|
/*
|
|
* This function contains 66 FP additions, 36 FP multiplications,
|
|
* (or, 44 additions, 14 multiplications, 22 fused multiply/add),
|
|
* 34 stack variables, 1 constants, and 32 memory accesses
|
|
*/
|
|
#include "dft/scalar/t.h"
|
|
|
|
static void t1_8(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
|
|
{
|
|
DK(KP707106781, +0.707106781186547524400844362104849039284835938);
|
|
{
|
|
INT m;
|
|
for (m = mb, W = W + (mb * 14); m < me; m = m + 1, ri = ri + ms, ii = ii + ms, W = W + 14, MAKE_VOLATILE_STRIDE(16, rs)) {
|
|
E T1, T1m, T7, T1l, Tk, TS, Te, TQ, TF, T14, TL, T16, T12, T17, Ts;
|
|
E TX, Ty, TZ, TV, T10;
|
|
T1 = ri[0];
|
|
T1m = ii[0];
|
|
{
|
|
E T3, T6, T4, T1k, T2, T5;
|
|
T3 = ri[WS(rs, 4)];
|
|
T6 = ii[WS(rs, 4)];
|
|
T2 = W[6];
|
|
T4 = T2 * T3;
|
|
T1k = T2 * T6;
|
|
T5 = W[7];
|
|
T7 = FMA(T5, T6, T4);
|
|
T1l = FNMS(T5, T3, T1k);
|
|
}
|
|
{
|
|
E Tg, Tj, Th, TR, Tf, Ti;
|
|
Tg = ri[WS(rs, 6)];
|
|
Tj = ii[WS(rs, 6)];
|
|
Tf = W[10];
|
|
Th = Tf * Tg;
|
|
TR = Tf * Tj;
|
|
Ti = W[11];
|
|
Tk = FMA(Ti, Tj, Th);
|
|
TS = FNMS(Ti, Tg, TR);
|
|
}
|
|
{
|
|
E Ta, Td, Tb, TP, T9, Tc;
|
|
Ta = ri[WS(rs, 2)];
|
|
Td = ii[WS(rs, 2)];
|
|
T9 = W[2];
|
|
Tb = T9 * Ta;
|
|
TP = T9 * Td;
|
|
Tc = W[3];
|
|
Te = FMA(Tc, Td, Tb);
|
|
TQ = FNMS(Tc, Ta, TP);
|
|
}
|
|
{
|
|
E TB, TE, TC, T13, TH, TK, TI, T15, TA, TG, TD, TJ;
|
|
TB = ri[WS(rs, 7)];
|
|
TE = ii[WS(rs, 7)];
|
|
TA = W[12];
|
|
TC = TA * TB;
|
|
T13 = TA * TE;
|
|
TH = ri[WS(rs, 3)];
|
|
TK = ii[WS(rs, 3)];
|
|
TG = W[4];
|
|
TI = TG * TH;
|
|
T15 = TG * TK;
|
|
TD = W[13];
|
|
TF = FMA(TD, TE, TC);
|
|
T14 = FNMS(TD, TB, T13);
|
|
TJ = W[5];
|
|
TL = FMA(TJ, TK, TI);
|
|
T16 = FNMS(TJ, TH, T15);
|
|
T12 = TF - TL;
|
|
T17 = T14 - T16;
|
|
}
|
|
{
|
|
E To, Tr, Tp, TW, Tu, Tx, Tv, TY, Tn, Tt, Tq, Tw;
|
|
To = ri[WS(rs, 1)];
|
|
Tr = ii[WS(rs, 1)];
|
|
Tn = W[0];
|
|
Tp = Tn * To;
|
|
TW = Tn * Tr;
|
|
Tu = ri[WS(rs, 5)];
|
|
Tx = ii[WS(rs, 5)];
|
|
Tt = W[8];
|
|
Tv = Tt * Tu;
|
|
TY = Tt * Tx;
|
|
Tq = W[1];
|
|
Ts = FMA(Tq, Tr, Tp);
|
|
TX = FNMS(Tq, To, TW);
|
|
Tw = W[9];
|
|
Ty = FMA(Tw, Tx, Tv);
|
|
TZ = FNMS(Tw, Tu, TY);
|
|
TV = Ts - Ty;
|
|
T10 = TX - TZ;
|
|
}
|
|
{
|
|
E TU, T1a, T1t, T1v, T19, T1w, T1d, T1u;
|
|
{
|
|
E TO, TT, T1r, T1s;
|
|
TO = T1 - T7;
|
|
TT = TQ - TS;
|
|
TU = TO + TT;
|
|
T1a = TO - TT;
|
|
T1r = T1m - T1l;
|
|
T1s = Te - Tk;
|
|
T1t = T1r - T1s;
|
|
T1v = T1s + T1r;
|
|
}
|
|
{
|
|
E T11, T18, T1b, T1c;
|
|
T11 = TV + T10;
|
|
T18 = T12 - T17;
|
|
T19 = T11 + T18;
|
|
T1w = T18 - T11;
|
|
T1b = T10 - TV;
|
|
T1c = T12 + T17;
|
|
T1d = T1b - T1c;
|
|
T1u = T1b + T1c;
|
|
}
|
|
ri[WS(rs, 5)] = FNMS(KP707106781, T19, TU);
|
|
ii[WS(rs, 5)] = FNMS(KP707106781, T1u, T1t);
|
|
ri[WS(rs, 1)] = FMA(KP707106781, T19, TU);
|
|
ii[WS(rs, 1)] = FMA(KP707106781, T1u, T1t);
|
|
ri[WS(rs, 7)] = FNMS(KP707106781, T1d, T1a);
|
|
ii[WS(rs, 7)] = FNMS(KP707106781, T1w, T1v);
|
|
ri[WS(rs, 3)] = FMA(KP707106781, T1d, T1a);
|
|
ii[WS(rs, 3)] = FMA(KP707106781, T1w, T1v);
|
|
}
|
|
{
|
|
E Tm, T1e, T1o, T1q, TN, T1p, T1h, T1i;
|
|
{
|
|
E T8, Tl, T1j, T1n;
|
|
T8 = T1 + T7;
|
|
Tl = Te + Tk;
|
|
Tm = T8 + Tl;
|
|
T1e = T8 - Tl;
|
|
T1j = TQ + TS;
|
|
T1n = T1l + T1m;
|
|
T1o = T1j + T1n;
|
|
T1q = T1n - T1j;
|
|
}
|
|
{
|
|
E Tz, TM, T1f, T1g;
|
|
Tz = Ts + Ty;
|
|
TM = TF + TL;
|
|
TN = Tz + TM;
|
|
T1p = TM - Tz;
|
|
T1f = TX + TZ;
|
|
T1g = T14 + T16;
|
|
T1h = T1f - T1g;
|
|
T1i = T1f + T1g;
|
|
}
|
|
ri[WS(rs, 4)] = Tm - TN;
|
|
ii[WS(rs, 4)] = T1o - T1i;
|
|
ri[0] = Tm + TN;
|
|
ii[0] = T1i + T1o;
|
|
ri[WS(rs, 6)] = T1e - T1h;
|
|
ii[WS(rs, 6)] = T1q - T1p;
|
|
ri[WS(rs, 2)] = T1e + T1h;
|
|
ii[WS(rs, 2)] = T1p + T1q;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static const tw_instr twinstr[] = {
|
|
{ TW_FULL, 0, 8 },
|
|
{ TW_NEXT, 1, 0 }
|
|
};
|
|
|
|
static const ct_desc desc = { 8, "t1_8", twinstr, &GENUS, { 44, 14, 22, 0 }, 0, 0, 0 };
|
|
|
|
void X(codelet_t1_8) (planner *p) {
|
|
X(kdft_dit_register) (p, t1_8, &desc);
|
|
}
|
|
#else
|
|
|
|
/* Generated by: ../../../genfft/gen_twiddle.native -compact -variables 4 -pipeline-latency 4 -n 8 -name t1_8 -include dft/scalar/t.h */
|
|
|
|
/*
|
|
* This function contains 66 FP additions, 32 FP multiplications,
|
|
* (or, 52 additions, 18 multiplications, 14 fused multiply/add),
|
|
* 28 stack variables, 1 constants, and 32 memory accesses
|
|
*/
|
|
#include "dft/scalar/t.h"
|
|
|
|
static void t1_8(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
|
|
{
|
|
DK(KP707106781, +0.707106781186547524400844362104849039284835938);
|
|
{
|
|
INT m;
|
|
for (m = mb, W = W + (mb * 14); m < me; m = m + 1, ri = ri + ms, ii = ii + ms, W = W + 14, MAKE_VOLATILE_STRIDE(16, rs)) {
|
|
E T7, T1e, TH, T19, TF, T13, TR, TU, Ti, T1f, TK, T16, Tu, T12, TM;
|
|
E TP;
|
|
{
|
|
E T1, T18, T6, T17;
|
|
T1 = ri[0];
|
|
T18 = ii[0];
|
|
{
|
|
E T3, T5, T2, T4;
|
|
T3 = ri[WS(rs, 4)];
|
|
T5 = ii[WS(rs, 4)];
|
|
T2 = W[6];
|
|
T4 = W[7];
|
|
T6 = FMA(T2, T3, T4 * T5);
|
|
T17 = FNMS(T4, T3, T2 * T5);
|
|
}
|
|
T7 = T1 + T6;
|
|
T1e = T18 - T17;
|
|
TH = T1 - T6;
|
|
T19 = T17 + T18;
|
|
}
|
|
{
|
|
E Tz, TS, TE, TT;
|
|
{
|
|
E Tw, Ty, Tv, Tx;
|
|
Tw = ri[WS(rs, 7)];
|
|
Ty = ii[WS(rs, 7)];
|
|
Tv = W[12];
|
|
Tx = W[13];
|
|
Tz = FMA(Tv, Tw, Tx * Ty);
|
|
TS = FNMS(Tx, Tw, Tv * Ty);
|
|
}
|
|
{
|
|
E TB, TD, TA, TC;
|
|
TB = ri[WS(rs, 3)];
|
|
TD = ii[WS(rs, 3)];
|
|
TA = W[4];
|
|
TC = W[5];
|
|
TE = FMA(TA, TB, TC * TD);
|
|
TT = FNMS(TC, TB, TA * TD);
|
|
}
|
|
TF = Tz + TE;
|
|
T13 = TS + TT;
|
|
TR = Tz - TE;
|
|
TU = TS - TT;
|
|
}
|
|
{
|
|
E Tc, TI, Th, TJ;
|
|
{
|
|
E T9, Tb, T8, Ta;
|
|
T9 = ri[WS(rs, 2)];
|
|
Tb = ii[WS(rs, 2)];
|
|
T8 = W[2];
|
|
Ta = W[3];
|
|
Tc = FMA(T8, T9, Ta * Tb);
|
|
TI = FNMS(Ta, T9, T8 * Tb);
|
|
}
|
|
{
|
|
E Te, Tg, Td, Tf;
|
|
Te = ri[WS(rs, 6)];
|
|
Tg = ii[WS(rs, 6)];
|
|
Td = W[10];
|
|
Tf = W[11];
|
|
Th = FMA(Td, Te, Tf * Tg);
|
|
TJ = FNMS(Tf, Te, Td * Tg);
|
|
}
|
|
Ti = Tc + Th;
|
|
T1f = Tc - Th;
|
|
TK = TI - TJ;
|
|
T16 = TI + TJ;
|
|
}
|
|
{
|
|
E To, TN, Tt, TO;
|
|
{
|
|
E Tl, Tn, Tk, Tm;
|
|
Tl = ri[WS(rs, 1)];
|
|
Tn = ii[WS(rs, 1)];
|
|
Tk = W[0];
|
|
Tm = W[1];
|
|
To = FMA(Tk, Tl, Tm * Tn);
|
|
TN = FNMS(Tm, Tl, Tk * Tn);
|
|
}
|
|
{
|
|
E Tq, Ts, Tp, Tr;
|
|
Tq = ri[WS(rs, 5)];
|
|
Ts = ii[WS(rs, 5)];
|
|
Tp = W[8];
|
|
Tr = W[9];
|
|
Tt = FMA(Tp, Tq, Tr * Ts);
|
|
TO = FNMS(Tr, Tq, Tp * Ts);
|
|
}
|
|
Tu = To + Tt;
|
|
T12 = TN + TO;
|
|
TM = To - Tt;
|
|
TP = TN - TO;
|
|
}
|
|
{
|
|
E Tj, TG, T1b, T1c;
|
|
Tj = T7 + Ti;
|
|
TG = Tu + TF;
|
|
ri[WS(rs, 4)] = Tj - TG;
|
|
ri[0] = Tj + TG;
|
|
{
|
|
E T15, T1a, T11, T14;
|
|
T15 = T12 + T13;
|
|
T1a = T16 + T19;
|
|
ii[0] = T15 + T1a;
|
|
ii[WS(rs, 4)] = T1a - T15;
|
|
T11 = T7 - Ti;
|
|
T14 = T12 - T13;
|
|
ri[WS(rs, 6)] = T11 - T14;
|
|
ri[WS(rs, 2)] = T11 + T14;
|
|
}
|
|
T1b = TF - Tu;
|
|
T1c = T19 - T16;
|
|
ii[WS(rs, 2)] = T1b + T1c;
|
|
ii[WS(rs, 6)] = T1c - T1b;
|
|
{
|
|
E TX, T1g, T10, T1d, TY, TZ;
|
|
TX = TH - TK;
|
|
T1g = T1e - T1f;
|
|
TY = TP - TM;
|
|
TZ = TR + TU;
|
|
T10 = KP707106781 * (TY - TZ);
|
|
T1d = KP707106781 * (TY + TZ);
|
|
ri[WS(rs, 7)] = TX - T10;
|
|
ii[WS(rs, 5)] = T1g - T1d;
|
|
ri[WS(rs, 3)] = TX + T10;
|
|
ii[WS(rs, 1)] = T1d + T1g;
|
|
}
|
|
{
|
|
E TL, T1i, TW, T1h, TQ, TV;
|
|
TL = TH + TK;
|
|
T1i = T1f + T1e;
|
|
TQ = TM + TP;
|
|
TV = TR - TU;
|
|
TW = KP707106781 * (TQ + TV);
|
|
T1h = KP707106781 * (TV - TQ);
|
|
ri[WS(rs, 5)] = TL - TW;
|
|
ii[WS(rs, 7)] = T1i - T1h;
|
|
ri[WS(rs, 1)] = TL + TW;
|
|
ii[WS(rs, 3)] = T1h + T1i;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static const tw_instr twinstr[] = {
|
|
{ TW_FULL, 0, 8 },
|
|
{ TW_NEXT, 1, 0 }
|
|
};
|
|
|
|
static const ct_desc desc = { 8, "t1_8", twinstr, &GENUS, { 52, 18, 14, 0 }, 0, 0, 0 };
|
|
|
|
void X(codelet_t1_8) (planner *p) {
|
|
X(kdft_dit_register) (p, t1_8, &desc);
|
|
}
|
|
#endif
|