furnace/extern/fftw/doc/html/Multi_002ddimensional-MPI-DFTs-of-Real-Data.html
2022-05-31 03:24:29 -05:00

195 lines
9.7 KiB
HTML

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html>
<!-- This manual is for FFTW
(version 3.3.10, 10 December 2020).
Copyright (C) 2003 Matteo Frigo.
Copyright (C) 2003 Massachusetts Institute of Technology.
Permission is granted to make and distribute verbatim copies of this
manual provided the copyright notice and this permission notice are
preserved on all copies.
Permission is granted to copy and distribute modified versions of this
manual under the conditions for verbatim copying, provided that the
entire resulting derived work is distributed under the terms of a
permission notice identical to this one.
Permission is granted to copy and distribute translations of this manual
into another language, under the above conditions for modified versions,
except that this permission notice may be stated in a translation
approved by the Free Software Foundation. -->
<!-- Created by GNU Texinfo 6.7, http://www.gnu.org/software/texinfo/ -->
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<title>Multi-dimensional MPI DFTs of Real Data (FFTW 3.3.10)</title>
<meta name="description" content="Multi-dimensional MPI DFTs of Real Data (FFTW 3.3.10)">
<meta name="keywords" content="Multi-dimensional MPI DFTs of Real Data (FFTW 3.3.10)">
<meta name="resource-type" content="document">
<meta name="distribution" content="global">
<meta name="Generator" content="makeinfo">
<link href="index.html" rel="start" title="Top">
<link href="Concept-Index.html" rel="index" title="Concept Index">
<link href="index.html#SEC_Contents" rel="contents" title="Table of Contents">
<link href="Distributed_002dmemory-FFTW-with-MPI.html" rel="up" title="Distributed-memory FFTW with MPI">
<link href="Other-Multi_002ddimensional-Real_002ddata-MPI-Transforms.html" rel="next" title="Other Multi-dimensional Real-data MPI Transforms">
<link href="One_002ddimensional-distributions.html" rel="prev" title="One-dimensional distributions">
<style type="text/css">
<!--
a.summary-letter {text-decoration: none}
blockquote.indentedblock {margin-right: 0em}
div.display {margin-left: 3.2em}
div.example {margin-left: 3.2em}
div.lisp {margin-left: 3.2em}
kbd {font-style: oblique}
pre.display {font-family: inherit}
pre.format {font-family: inherit}
pre.menu-comment {font-family: serif}
pre.menu-preformatted {font-family: serif}
span.nolinebreak {white-space: nowrap}
span.roman {font-family: initial; font-weight: normal}
span.sansserif {font-family: sans-serif; font-weight: normal}
ul.no-bullet {list-style: none}
-->
</style>
</head>
<body lang="en">
<span id="Multi_002ddimensional-MPI-DFTs-of-Real-Data"></span><div class="header">
<p>
Next: <a href="Other-Multi_002ddimensional-Real_002ddata-MPI-Transforms.html" accesskey="n" rel="next">Other Multi-dimensional Real-data MPI Transforms</a>, Previous: <a href="MPI-Data-Distribution.html" accesskey="p" rel="prev">MPI Data Distribution</a>, Up: <a href="Distributed_002dmemory-FFTW-with-MPI.html" accesskey="u" rel="up">Distributed-memory FFTW with MPI</a> &nbsp; [<a href="index.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="Concept-Index.html" title="Index" rel="index">Index</a>]</p>
</div>
<hr>
<span id="Multi_002ddimensional-MPI-DFTs-of-Real-Data-1"></span><h3 class="section">6.5 Multi-dimensional MPI DFTs of Real Data</h3>
<p>FFTW&rsquo;s MPI interface also supports multi-dimensional DFTs of real
data, similar to the serial r2c and c2r interfaces. (Parallel
one-dimensional real-data DFTs are not currently supported; you must
use a complex transform and set the imaginary parts of the inputs to
zero.)
</p>
<p>The key points to understand for r2c and c2r MPI transforms (compared
to the MPI complex DFTs or the serial r2c/c2r transforms), are:
</p>
<ul>
<li> Just as for serial transforms, r2c/c2r DFTs transform n<sub>0</sub>&nbsp;&times;&nbsp;n<sub>1</sub>&nbsp;&times;&nbsp;n<sub>2</sub>&nbsp;&times;&nbsp;&hellip;&nbsp;&times;&nbsp;n<sub>d-1</sub>
real
data to/from n<sub>0</sub>&nbsp;&times;&nbsp;n<sub>1</sub>&nbsp;&times;&nbsp;n<sub>2</sub>&nbsp;&times;&nbsp;&hellip;&nbsp;&times;&nbsp;(n<sub>d-1</sub>/2 + 1)
complex data: the last dimension of the
complex data is cut in half (rounded down), plus one. As for the
serial transforms, the sizes you pass to the &lsquo;<samp>plan_dft_r2c</samp>&rsquo; and
&lsquo;<samp>plan_dft_c2r</samp>&rsquo; are the n<sub>0</sub>&nbsp;&times;&nbsp;n<sub>1</sub>&nbsp;&times;&nbsp;n<sub>2</sub>&nbsp;&times;&nbsp;&hellip;&nbsp;&times;&nbsp;n<sub>d-1</sub>
dimensions of the real data.
</li><li> <span id="index-padding-4"></span>
Although the real data is <em>conceptually</em> n<sub>0</sub>&nbsp;&times;&nbsp;n<sub>1</sub>&nbsp;&times;&nbsp;n<sub>2</sub>&nbsp;&times;&nbsp;&hellip;&nbsp;&times;&nbsp;n<sub>d-1</sub>
, it is
<em>physically</em> stored as an n<sub>0</sub>&nbsp;&times;&nbsp;n<sub>1</sub>&nbsp;&times;&nbsp;n<sub>2</sub>&nbsp;&times;&nbsp;&hellip;&nbsp;&times;&nbsp;[2&nbsp;(n<sub>d-1</sub>/2 + 1)]
array, where the last
dimension has been <em>padded</em> to make it the same size as the
complex output. This is much like the in-place serial r2c/c2r
interface (see <a href="Multi_002dDimensional-DFTs-of-Real-Data.html">Multi-Dimensional DFTs of Real Data</a>), except that
in MPI the padding is required even for out-of-place data. The extra
padding numbers are ignored by FFTW (they are <em>not</em> like
zero-padding the transform to a larger size); they are only used to
determine the data layout.
</li><li> <span id="index-data-distribution-3"></span>
The data distribution in MPI for <em>both</em> the real and complex data
is determined by the shape of the <em>complex</em> data. That is, you
call the appropriate &lsquo;<samp>local size</samp>&rsquo; function for the n<sub>0</sub>&nbsp;&times;&nbsp;n<sub>1</sub>&nbsp;&times;&nbsp;n<sub>2</sub>&nbsp;&times;&nbsp;&hellip;&nbsp;&times;&nbsp;(n<sub>d-1</sub>/2 + 1)
complex data, and then use the <em>same</em> distribution for the real
data except that the last complex dimension is replaced by a (padded)
real dimension of twice the length.
</li></ul>
<p>For example suppose we are performing an out-of-place r2c transform of
L&nbsp;&times;&nbsp;M&nbsp;&times;&nbsp;N
real data [padded to L&nbsp;&times;&nbsp;M&nbsp;&times;&nbsp;2(N/2+1)
],
resulting in L&nbsp;&times;&nbsp;M&nbsp;&times;&nbsp;N/2+1
complex data. Similar to the
example in <a href="2d-MPI-example.html">2d MPI example</a>, we might do something like:
</p>
<div class="example">
<pre class="example">#include &lt;fftw3-mpi.h&gt;
int main(int argc, char **argv)
{
const ptrdiff_t L = ..., M = ..., N = ...;
fftw_plan plan;
double *rin;
fftw_complex *cout;
ptrdiff_t alloc_local, local_n0, local_0_start, i, j, k;
MPI_Init(&amp;argc, &amp;argv);
fftw_mpi_init();
/* <span class="roman">get local data size and allocate</span> */
alloc_local = fftw_mpi_local_size_3d(L, M, N/2+1, MPI_COMM_WORLD,
&amp;local_n0, &amp;local_0_start);
rin = fftw_alloc_real(2 * alloc_local);
cout = fftw_alloc_complex(alloc_local);
/* <span class="roman">create plan for out-of-place r2c DFT</span> */
plan = fftw_mpi_plan_dft_r2c_3d(L, M, N, rin, cout, MPI_COMM_WORLD,
FFTW_MEASURE);
/* <span class="roman">initialize rin to some function</span> my_func(x,y,z) */
for (i = 0; i &lt; local_n0; ++i)
for (j = 0; j &lt; M; ++j)
for (k = 0; k &lt; N; ++k)
rin[(i*M + j) * (2*(N/2+1)) + k] = my_func(local_0_start+i, j, k);
/* <span class="roman">compute transforms as many times as desired</span> */
fftw_execute(plan);
fftw_destroy_plan(plan);
MPI_Finalize();
}
</pre></div>
<span id="index-fftw_005falloc_005freal-2"></span>
<span id="index-row_002dmajor-5"></span>
<p>Note that we allocated <code>rin</code> using <code>fftw_alloc_real</code> with an
argument of <code>2 * alloc_local</code>: since <code>alloc_local</code> is the
number of <em>complex</em> values to allocate, the number of <em>real</em>
values is twice as many. The <code>rin</code> array is then
local_n0&nbsp;&times;&nbsp;M&nbsp;&times;&nbsp;2(N/2+1)
in row-major order, so its
<code>(i,j,k)</code> element is at the index <code>(i*M + j) * (2*(N/2+1)) +
k</code> (see <a href="Multi_002ddimensional-Array-Format.html">Multi-dimensional Array Format</a>).
</p>
<span id="index-transpose-1"></span>
<span id="index-FFTW_005fTRANSPOSED_005fOUT"></span>
<span id="index-FFTW_005fTRANSPOSED_005fIN"></span>
<p>As for the complex transforms, improved performance can be obtained by
specifying that the output is the transpose of the input or vice versa
(see <a href="Transposed-distributions.html">Transposed distributions</a>). In our L&nbsp;&times;&nbsp;M&nbsp;&times;&nbsp;N
r2c
example, including <code>FFTW_TRANSPOSED_OUT</code> in the flags means that
the input would be a padded L&nbsp;&times;&nbsp;M&nbsp;&times;&nbsp;2(N/2+1)
real array
distributed over the <code>L</code> dimension, while the output would be a
M&nbsp;&times;&nbsp;L&nbsp;&times;&nbsp;N/2+1
complex array distributed over the <code>M</code>
dimension. To perform the inverse c2r transform with the same data
distributions, you would use the <code>FFTW_TRANSPOSED_IN</code> flag.
</p>
<hr>
<div class="header">
<p>
Next: <a href="Other-Multi_002ddimensional-Real_002ddata-MPI-Transforms.html" accesskey="n" rel="next">Other Multi-dimensional Real-data MPI Transforms</a>, Previous: <a href="MPI-Data-Distribution.html" accesskey="p" rel="prev">MPI Data Distribution</a>, Up: <a href="Distributed_002dmemory-FFTW-with-MPI.html" accesskey="u" rel="up">Distributed-memory FFTW with MPI</a> &nbsp; [<a href="index.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="Concept-Index.html" title="Index" rel="index">Index</a>]</p>
</div>
</body>
</html>