furnace/extern/fftw/tests/bench.c

553 lines
15 KiB
C

/**************************************************************************/
/* NOTE to users: this is the FFTW self-test and benchmark program.
It is probably NOT a good place to learn FFTW usage, since it has a
lot of added complexity in order to exercise and test the full API,
etcetera. We suggest reading the manual.
(Some of the self-test code is split off into fftw-bench.c and
hook.c.) */
/**************************************************************************/
#include <math.h>
#include <stdio.h>
#include <string.h>
#include "tests/fftw-bench.h"
static const char *mkversion(void) { return FFTW(version); }
static const char *mkcc(void) { return FFTW(cc); }
static const char *mkcodelet_optim(void) { return FFTW(codelet_optim); }
BEGIN_BENCH_DOC
BENCH_DOC("name", "fftw3")
BENCH_DOCF("version", mkversion)
BENCH_DOCF("cc", mkcc)
BENCH_DOCF("codelet-optim", mkcodelet_optim)
END_BENCH_DOC
static FFTW(iodim) *bench_tensor_to_fftw_iodim(bench_tensor *t)
{
FFTW(iodim) *d;
int i;
BENCH_ASSERT(t->rnk >= 0);
if (t->rnk == 0) return 0;
d = (FFTW(iodim) *)bench_malloc(sizeof(FFTW(iodim)) * t->rnk);
for (i = 0; i < t->rnk; ++i) {
d[i].n = t->dims[i].n;
d[i].is = t->dims[i].is;
d[i].os = t->dims[i].os;
}
return d;
}
static void extract_reim_split(int sign, int size, bench_real *p,
bench_real **r, bench_real **i)
{
if (sign == FFTW_FORWARD) {
*r = p + 0;
*i = p + size;
} else {
*r = p + size;
*i = p + 0;
}
}
static int sizeof_problem(bench_problem *p)
{
return tensor_sz(p->sz) * tensor_sz(p->vecsz);
}
/* ouch */
static int expressible_as_api_many(bench_tensor *t)
{
int i;
BENCH_ASSERT(BENCH_FINITE_RNK(t->rnk));
i = t->rnk - 1;
while (--i >= 0) {
bench_iodim *d = t->dims + i;
if (d[0].is % d[1].is) return 0;
if (d[0].os % d[1].os) return 0;
}
return 1;
}
static int *mkn(bench_tensor *t)
{
int *n = (int *) bench_malloc(sizeof(int *) * t->rnk);
int i;
for (i = 0; i < t->rnk; ++i)
n[i] = t->dims[i].n;
return n;
}
static void mknembed_many(bench_tensor *t, int **inembedp, int **onembedp)
{
int i;
bench_iodim *d;
int *inembed = (int *) bench_malloc(sizeof(int *) * t->rnk);
int *onembed = (int *) bench_malloc(sizeof(int *) * t->rnk);
BENCH_ASSERT(BENCH_FINITE_RNK(t->rnk));
*inembedp = inembed; *onembedp = onembed;
i = t->rnk - 1;
while (--i >= 0) {
d = t->dims + i;
inembed[i+1] = d[0].is / d[1].is;
onembed[i+1] = d[0].os / d[1].os;
}
}
/* try to use the most appropriate API function. Big mess. */
static int imax(int a, int b) { return (a > b ? a : b); }
static int halfish_sizeof_problem(bench_problem *p)
{
int n2 = sizeof_problem(p);
if (BENCH_FINITE_RNK(p->sz->rnk) && p->sz->rnk > 0)
n2 = (n2 / imax(p->sz->dims[p->sz->rnk - 1].n, 1)) *
(p->sz->dims[p->sz->rnk - 1].n / 2 + 1);
return n2;
}
static FFTW(plan) mkplan_real_split(bench_problem *p, unsigned flags)
{
FFTW(plan) pln;
bench_tensor *sz = p->sz, *vecsz = p->vecsz;
FFTW(iodim) *dims, *howmany_dims;
bench_real *ri, *ii, *ro, *io;
int n2 = halfish_sizeof_problem(p);
extract_reim_split(FFTW_FORWARD, n2, (bench_real *) p->in, &ri, &ii);
extract_reim_split(FFTW_FORWARD, n2, (bench_real *) p->out, &ro, &io);
dims = bench_tensor_to_fftw_iodim(sz);
howmany_dims = bench_tensor_to_fftw_iodim(vecsz);
if (p->sign < 0) {
if (verbose > 2) printf("using plan_guru_split_dft_r2c\n");
pln = FFTW(plan_guru_split_dft_r2c)(sz->rnk, dims,
vecsz->rnk, howmany_dims,
ri, ro, io, flags);
}
else {
if (verbose > 2) printf("using plan_guru_split_dft_c2r\n");
pln = FFTW(plan_guru_split_dft_c2r)(sz->rnk, dims,
vecsz->rnk, howmany_dims,
ri, ii, ro, flags);
}
bench_free(dims);
bench_free(howmany_dims);
return pln;
}
static FFTW(plan) mkplan_real_interleaved(bench_problem *p, unsigned flags)
{
FFTW(plan) pln;
bench_tensor *sz = p->sz, *vecsz = p->vecsz;
if (vecsz->rnk == 0 && tensor_unitstridep(sz)
&& tensor_real_rowmajorp(sz, p->sign, p->in_place))
goto api_simple;
if (vecsz->rnk == 1 && expressible_as_api_many(sz))
goto api_many;
goto api_guru;
api_simple:
switch (sz->rnk) {
case 1:
if (p->sign < 0) {
if (verbose > 2) printf("using plan_dft_r2c_1d\n");
return FFTW(plan_dft_r2c_1d)(sz->dims[0].n,
(bench_real *) p->in,
(bench_complex *) p->out,
flags);
}
else {
if (verbose > 2) printf("using plan_dft_c2r_1d\n");
return FFTW(plan_dft_c2r_1d)(sz->dims[0].n,
(bench_complex *) p->in,
(bench_real *) p->out,
flags);
}
break;
case 2:
if (p->sign < 0) {
if (verbose > 2) printf("using plan_dft_r2c_2d\n");
return FFTW(plan_dft_r2c_2d)(sz->dims[0].n, sz->dims[1].n,
(bench_real *) p->in,
(bench_complex *) p->out,
flags);
}
else {
if (verbose > 2) printf("using plan_dft_c2r_2d\n");
return FFTW(plan_dft_c2r_2d)(sz->dims[0].n, sz->dims[1].n,
(bench_complex *) p->in,
(bench_real *) p->out,
flags);
}
break;
case 3:
if (p->sign < 0) {
if (verbose > 2) printf("using plan_dft_r2c_3d\n");
return FFTW(plan_dft_r2c_3d)(
sz->dims[0].n, sz->dims[1].n, sz->dims[2].n,
(bench_real *) p->in, (bench_complex *) p->out,
flags);
}
else {
if (verbose > 2) printf("using plan_dft_c2r_3d\n");
return FFTW(plan_dft_c2r_3d)(
sz->dims[0].n, sz->dims[1].n, sz->dims[2].n,
(bench_complex *) p->in, (bench_real *) p->out,
flags);
}
break;
default: {
int *n = mkn(sz);
if (p->sign < 0) {
if (verbose > 2) printf("using plan_dft_r2c\n");
pln = FFTW(plan_dft_r2c)(sz->rnk, n,
(bench_real *) p->in,
(bench_complex *) p->out,
flags);
}
else {
if (verbose > 2) printf("using plan_dft_c2r\n");
pln = FFTW(plan_dft_c2r)(sz->rnk, n,
(bench_complex *) p->in,
(bench_real *) p->out,
flags);
}
bench_free(n);
return pln;
}
}
api_many:
{
int *n, *inembed, *onembed;
BENCH_ASSERT(vecsz->rnk == 1);
n = mkn(sz);
mknembed_many(sz, &inembed, &onembed);
if (p->sign < 0) {
if (verbose > 2) printf("using plan_many_dft_r2c\n");
pln = FFTW(plan_many_dft_r2c)(
sz->rnk, n, vecsz->dims[0].n,
(bench_real *) p->in, inembed,
sz->dims[sz->rnk - 1].is, vecsz->dims[0].is,
(bench_complex *) p->out, onembed,
sz->dims[sz->rnk - 1].os, vecsz->dims[0].os,
flags);
}
else {
if (verbose > 2) printf("using plan_many_dft_c2r\n");
pln = FFTW(plan_many_dft_c2r)(
sz->rnk, n, vecsz->dims[0].n,
(bench_complex *) p->in, inembed,
sz->dims[sz->rnk - 1].is, vecsz->dims[0].is,
(bench_real *) p->out, onembed,
sz->dims[sz->rnk - 1].os, vecsz->dims[0].os,
flags);
}
bench_free(n); bench_free(inembed); bench_free(onembed);
return pln;
}
api_guru:
{
FFTW(iodim) *dims, *howmany_dims;
if (p->sign < 0) {
dims = bench_tensor_to_fftw_iodim(sz);
howmany_dims = bench_tensor_to_fftw_iodim(vecsz);
if (verbose > 2) printf("using plan_guru_dft_r2c\n");
pln = FFTW(plan_guru_dft_r2c)(sz->rnk, dims,
vecsz->rnk, howmany_dims,
(bench_real *) p->in,
(bench_complex *) p->out,
flags);
}
else {
dims = bench_tensor_to_fftw_iodim(sz);
howmany_dims = bench_tensor_to_fftw_iodim(vecsz);
if (verbose > 2) printf("using plan_guru_dft_c2r\n");
pln = FFTW(plan_guru_dft_c2r)(sz->rnk, dims,
vecsz->rnk, howmany_dims,
(bench_complex *) p->in,
(bench_real *) p->out,
flags);
}
bench_free(dims);
bench_free(howmany_dims);
return pln;
}
}
static FFTW(plan) mkplan_real(bench_problem *p, unsigned flags)
{
if (p->split)
return mkplan_real_split(p, flags);
else
return mkplan_real_interleaved(p, flags);
}
static FFTW(plan) mkplan_complex_split(bench_problem *p, unsigned flags)
{
FFTW(plan) pln;
bench_tensor *sz = p->sz, *vecsz = p->vecsz;
FFTW(iodim) *dims, *howmany_dims;
bench_real *ri, *ii, *ro, *io;
extract_reim_split(p->sign, p->iphyssz, (bench_real *) p->in, &ri, &ii);
extract_reim_split(p->sign, p->ophyssz, (bench_real *) p->out, &ro, &io);
dims = bench_tensor_to_fftw_iodim(sz);
howmany_dims = bench_tensor_to_fftw_iodim(vecsz);
if (verbose > 2) printf("using plan_guru_split_dft\n");
pln = FFTW(plan_guru_split_dft)(sz->rnk, dims,
vecsz->rnk, howmany_dims,
ri, ii, ro, io, flags);
bench_free(dims);
bench_free(howmany_dims);
return pln;
}
static FFTW(plan) mkplan_complex_interleaved(bench_problem *p, unsigned flags)
{
FFTW(plan) pln;
bench_tensor *sz = p->sz, *vecsz = p->vecsz;
if (vecsz->rnk == 0 && tensor_unitstridep(sz) && tensor_rowmajorp(sz))
goto api_simple;
if (vecsz->rnk == 1 && expressible_as_api_many(sz))
goto api_many;
goto api_guru;
api_simple:
switch (sz->rnk) {
case 1:
if (verbose > 2) printf("using plan_dft_1d\n");
return FFTW(plan_dft_1d)(sz->dims[0].n,
(bench_complex *) p->in,
(bench_complex *) p->out,
p->sign, flags);
break;
case 2:
if (verbose > 2) printf("using plan_dft_2d\n");
return FFTW(plan_dft_2d)(sz->dims[0].n, sz->dims[1].n,
(bench_complex *) p->in,
(bench_complex *) p->out,
p->sign, flags);
break;
case 3:
if (verbose > 2) printf("using plan_dft_3d\n");
return FFTW(plan_dft_3d)(
sz->dims[0].n, sz->dims[1].n, sz->dims[2].n,
(bench_complex *) p->in, (bench_complex *) p->out,
p->sign, flags);
break;
default: {
int *n = mkn(sz);
if (verbose > 2) printf("using plan_dft\n");
pln = FFTW(plan_dft)(sz->rnk, n,
(bench_complex *) p->in,
(bench_complex *) p->out, p->sign, flags);
bench_free(n);
return pln;
}
}
api_many:
{
int *n, *inembed, *onembed;
BENCH_ASSERT(vecsz->rnk == 1);
n = mkn(sz);
mknembed_many(sz, &inembed, &onembed);
if (verbose > 2) printf("using plan_many_dft\n");
pln = FFTW(plan_many_dft)(
sz->rnk, n, vecsz->dims[0].n,
(bench_complex *) p->in,
inembed, sz->dims[sz->rnk - 1].is, vecsz->dims[0].is,
(bench_complex *) p->out,
onembed, sz->dims[sz->rnk - 1].os, vecsz->dims[0].os,
p->sign, flags);
bench_free(n); bench_free(inembed); bench_free(onembed);
return pln;
}
api_guru:
{
FFTW(iodim) *dims, *howmany_dims;
dims = bench_tensor_to_fftw_iodim(sz);
howmany_dims = bench_tensor_to_fftw_iodim(vecsz);
if (verbose > 2) printf("using plan_guru_dft\n");
pln = FFTW(plan_guru_dft)(sz->rnk, dims,
vecsz->rnk, howmany_dims,
(bench_complex *) p->in,
(bench_complex *) p->out,
p->sign, flags);
bench_free(dims);
bench_free(howmany_dims);
return pln;
}
}
static FFTW(plan) mkplan_complex(bench_problem *p, unsigned flags)
{
if (p->split)
return mkplan_complex_split(p, flags);
else
return mkplan_complex_interleaved(p, flags);
}
static FFTW(plan) mkplan_r2r(bench_problem *p, unsigned flags)
{
FFTW(plan) pln;
bench_tensor *sz = p->sz, *vecsz = p->vecsz;
FFTW(r2r_kind) *k;
k = (FFTW(r2r_kind) *) bench_malloc(sizeof(FFTW(r2r_kind)) * sz->rnk);
{
int i;
for (i = 0; i < sz->rnk; ++i)
switch (p->k[i]) {
case R2R_R2HC: k[i] = FFTW_R2HC; break;
case R2R_HC2R: k[i] = FFTW_HC2R; break;
case R2R_DHT: k[i] = FFTW_DHT; break;
case R2R_REDFT00: k[i] = FFTW_REDFT00; break;
case R2R_REDFT01: k[i] = FFTW_REDFT01; break;
case R2R_REDFT10: k[i] = FFTW_REDFT10; break;
case R2R_REDFT11: k[i] = FFTW_REDFT11; break;
case R2R_RODFT00: k[i] = FFTW_RODFT00; break;
case R2R_RODFT01: k[i] = FFTW_RODFT01; break;
case R2R_RODFT10: k[i] = FFTW_RODFT10; break;
case R2R_RODFT11: k[i] = FFTW_RODFT11; break;
default: BENCH_ASSERT(0);
}
}
if (vecsz->rnk == 0 && tensor_unitstridep(sz) && tensor_rowmajorp(sz))
goto api_simple;
if (vecsz->rnk == 1 && expressible_as_api_many(sz))
goto api_many;
goto api_guru;
api_simple:
switch (sz->rnk) {
case 1:
if (verbose > 2) printf("using plan_r2r_1d\n");
pln = FFTW(plan_r2r_1d)(sz->dims[0].n,
(bench_real *) p->in,
(bench_real *) p->out,
k[0], flags);
goto done;
case 2:
if (verbose > 2) printf("using plan_r2r_2d\n");
pln = FFTW(plan_r2r_2d)(sz->dims[0].n, sz->dims[1].n,
(bench_real *) p->in,
(bench_real *) p->out,
k[0], k[1], flags);
goto done;
case 3:
if (verbose > 2) printf("using plan_r2r_3d\n");
pln = FFTW(plan_r2r_3d)(
sz->dims[0].n, sz->dims[1].n, sz->dims[2].n,
(bench_real *) p->in, (bench_real *) p->out,
k[0], k[1], k[2], flags);
goto done;
default: {
int *n = mkn(sz);
if (verbose > 2) printf("using plan_r2r\n");
pln = FFTW(plan_r2r)(sz->rnk, n,
(bench_real *) p->in, (bench_real *) p->out,
k, flags);
bench_free(n);
goto done;
}
}
api_many:
{
int *n, *inembed, *onembed;
BENCH_ASSERT(vecsz->rnk == 1);
n = mkn(sz);
mknembed_many(sz, &inembed, &onembed);
if (verbose > 2) printf("using plan_many_r2r\n");
pln = FFTW(plan_many_r2r)(
sz->rnk, n, vecsz->dims[0].n,
(bench_real *) p->in,
inembed, sz->dims[sz->rnk - 1].is, vecsz->dims[0].is,
(bench_real *) p->out,
onembed, sz->dims[sz->rnk - 1].os, vecsz->dims[0].os,
k, flags);
bench_free(n); bench_free(inembed); bench_free(onembed);
goto done;
}
api_guru:
{
FFTW(iodim) *dims, *howmany_dims;
dims = bench_tensor_to_fftw_iodim(sz);
howmany_dims = bench_tensor_to_fftw_iodim(vecsz);
if (verbose > 2) printf("using plan_guru_r2r\n");
pln = FFTW(plan_guru_r2r)(sz->rnk, dims,
vecsz->rnk, howmany_dims,
(bench_real *) p->in,
(bench_real *) p->out, k, flags);
bench_free(dims);
bench_free(howmany_dims);
goto done;
}
done:
bench_free(k);
return pln;
}
FFTW(plan) mkplan(bench_problem *p, unsigned flags)
{
switch (p->kind) {
case PROBLEM_COMPLEX: return mkplan_complex(p, flags);
case PROBLEM_REAL: return mkplan_real(p, flags);
case PROBLEM_R2R: return mkplan_r2r(p, flags);
default: BENCH_ASSERT(0); return 0;
}
}
void main_init(int *argc, char ***argv)
{
UNUSED(argc);
UNUSED(argv);
}
void initial_cleanup(void)
{
}
void final_cleanup(void)
{
}
int import_wisdom(FILE *f)
{
return FFTW(import_wisdom_from_file)(f);
}
void export_wisdom(FILE *f)
{
FFTW(export_wisdom_to_file)(f);
}