furnace/extern/fftw/dft/simd/common/t2sv_4.c

203 lines
6.4 KiB
C

/*
* Copyright (c) 2003, 2007-14 Matteo Frigo
* Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
*/
/* This file was automatically generated --- DO NOT EDIT */
/* Generated on Tue Sep 14 10:45:59 EDT 2021 */
#include "dft/codelet-dft.h"
#if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
/* Generated by: ../../../genfft/gen_twiddle.native -fma -simd -compact -variables 4 -pipeline-latency 8 -twiddle-log3 -precompute-twiddles -n 4 -name t2sv_4 -include dft/simd/ts.h */
/*
* This function contains 24 FP additions, 16 FP multiplications,
* (or, 16 additions, 8 multiplications, 8 fused multiply/add),
* 21 stack variables, 0 constants, and 16 memory accesses
*/
#include "dft/simd/ts.h"
static void t2sv_4(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
{
{
INT m;
for (m = mb, W = W + (mb * 4); m < me; m = m + (2 * VL), ri = ri + ((2 * VL) * ms), ii = ii + ((2 * VL) * ms), W = W + ((2 * VL) * 4), MAKE_VOLATILE_STRIDE(8, rs)) {
V T2, T6, T3, T5, T7, Tb, T4, Ta;
T2 = LDW(&(W[0]));
T6 = LDW(&(W[TWVL * 3]));
T3 = LDW(&(W[TWVL * 2]));
T4 = VMUL(T2, T3);
Ta = VMUL(T2, T6);
T5 = LDW(&(W[TWVL * 1]));
T7 = VFMA(T5, T6, T4);
Tb = VFNMS(T5, T3, Ta);
{
V T1, Tx, Td, Tw, Ti, Tq, Tm, Ts;
T1 = LD(&(ri[0]), ms, &(ri[0]));
Tx = LD(&(ii[0]), ms, &(ii[0]));
{
V T8, T9, Tc, Tv;
T8 = LD(&(ri[WS(rs, 2)]), ms, &(ri[0]));
T9 = VMUL(T7, T8);
Tc = LD(&(ii[WS(rs, 2)]), ms, &(ii[0]));
Tv = VMUL(T7, Tc);
Td = VFMA(Tb, Tc, T9);
Tw = VFNMS(Tb, T8, Tv);
}
{
V Tf, Tg, Th, Tp;
Tf = LD(&(ri[WS(rs, 1)]), ms, &(ri[WS(rs, 1)]));
Tg = VMUL(T2, Tf);
Th = LD(&(ii[WS(rs, 1)]), ms, &(ii[WS(rs, 1)]));
Tp = VMUL(T2, Th);
Ti = VFMA(T5, Th, Tg);
Tq = VFNMS(T5, Tf, Tp);
}
{
V Tj, Tk, Tl, Tr;
Tj = LD(&(ri[WS(rs, 3)]), ms, &(ri[WS(rs, 1)]));
Tk = VMUL(T3, Tj);
Tl = LD(&(ii[WS(rs, 3)]), ms, &(ii[WS(rs, 1)]));
Tr = VMUL(T3, Tl);
Tm = VFMA(T6, Tl, Tk);
Ts = VFNMS(T6, Tj, Tr);
}
{
V Te, Tn, Tu, Ty;
Te = VADD(T1, Td);
Tn = VADD(Ti, Tm);
ST(&(ri[WS(rs, 2)]), VSUB(Te, Tn), ms, &(ri[0]));
ST(&(ri[0]), VADD(Te, Tn), ms, &(ri[0]));
Tu = VADD(Tq, Ts);
Ty = VADD(Tw, Tx);
ST(&(ii[0]), VADD(Tu, Ty), ms, &(ii[0]));
ST(&(ii[WS(rs, 2)]), VSUB(Ty, Tu), ms, &(ii[0]));
}
{
V To, Tt, Tz, TA;
To = VSUB(T1, Td);
Tt = VSUB(Tq, Ts);
ST(&(ri[WS(rs, 3)]), VSUB(To, Tt), ms, &(ri[WS(rs, 1)]));
ST(&(ri[WS(rs, 1)]), VADD(To, Tt), ms, &(ri[WS(rs, 1)]));
Tz = VSUB(Tx, Tw);
TA = VSUB(Ti, Tm);
ST(&(ii[WS(rs, 1)]), VSUB(Tz, TA), ms, &(ii[WS(rs, 1)]));
ST(&(ii[WS(rs, 3)]), VADD(TA, Tz), ms, &(ii[WS(rs, 1)]));
}
}
}
}
VLEAVE();
}
static const tw_instr twinstr[] = {
VTW(0, 1),
VTW(0, 3),
{ TW_NEXT, (2 * VL), 0 }
};
static const ct_desc desc = { 4, XSIMD_STRING("t2sv_4"), twinstr, &GENUS, { 16, 8, 8, 0 }, 0, 0, 0 };
void XSIMD(codelet_t2sv_4) (planner *p) {
X(kdft_dit_register) (p, t2sv_4, &desc);
}
#else
/* Generated by: ../../../genfft/gen_twiddle.native -simd -compact -variables 4 -pipeline-latency 8 -twiddle-log3 -precompute-twiddles -n 4 -name t2sv_4 -include dft/simd/ts.h */
/*
* This function contains 24 FP additions, 16 FP multiplications,
* (or, 16 additions, 8 multiplications, 8 fused multiply/add),
* 21 stack variables, 0 constants, and 16 memory accesses
*/
#include "dft/simd/ts.h"
static void t2sv_4(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
{
{
INT m;
for (m = mb, W = W + (mb * 4); m < me; m = m + (2 * VL), ri = ri + ((2 * VL) * ms), ii = ii + ((2 * VL) * ms), W = W + ((2 * VL) * 4), MAKE_VOLATILE_STRIDE(8, rs)) {
V T2, T4, T3, T5, T6, T8;
T2 = LDW(&(W[0]));
T4 = LDW(&(W[TWVL * 1]));
T3 = LDW(&(W[TWVL * 2]));
T5 = LDW(&(W[TWVL * 3]));
T6 = VFMA(T2, T3, VMUL(T4, T5));
T8 = VFNMS(T4, T3, VMUL(T2, T5));
{
V T1, Tp, Ta, To, Te, Tk, Th, Tl, T7, T9;
T1 = LD(&(ri[0]), ms, &(ri[0]));
Tp = LD(&(ii[0]), ms, &(ii[0]));
T7 = LD(&(ri[WS(rs, 2)]), ms, &(ri[0]));
T9 = LD(&(ii[WS(rs, 2)]), ms, &(ii[0]));
Ta = VFMA(T6, T7, VMUL(T8, T9));
To = VFNMS(T8, T7, VMUL(T6, T9));
{
V Tc, Td, Tf, Tg;
Tc = LD(&(ri[WS(rs, 1)]), ms, &(ri[WS(rs, 1)]));
Td = LD(&(ii[WS(rs, 1)]), ms, &(ii[WS(rs, 1)]));
Te = VFMA(T2, Tc, VMUL(T4, Td));
Tk = VFNMS(T4, Tc, VMUL(T2, Td));
Tf = LD(&(ri[WS(rs, 3)]), ms, &(ri[WS(rs, 1)]));
Tg = LD(&(ii[WS(rs, 3)]), ms, &(ii[WS(rs, 1)]));
Th = VFMA(T3, Tf, VMUL(T5, Tg));
Tl = VFNMS(T5, Tf, VMUL(T3, Tg));
}
{
V Tb, Ti, Tn, Tq;
Tb = VADD(T1, Ta);
Ti = VADD(Te, Th);
ST(&(ri[WS(rs, 2)]), VSUB(Tb, Ti), ms, &(ri[0]));
ST(&(ri[0]), VADD(Tb, Ti), ms, &(ri[0]));
Tn = VADD(Tk, Tl);
Tq = VADD(To, Tp);
ST(&(ii[0]), VADD(Tn, Tq), ms, &(ii[0]));
ST(&(ii[WS(rs, 2)]), VSUB(Tq, Tn), ms, &(ii[0]));
}
{
V Tj, Tm, Tr, Ts;
Tj = VSUB(T1, Ta);
Tm = VSUB(Tk, Tl);
ST(&(ri[WS(rs, 3)]), VSUB(Tj, Tm), ms, &(ri[WS(rs, 1)]));
ST(&(ri[WS(rs, 1)]), VADD(Tj, Tm), ms, &(ri[WS(rs, 1)]));
Tr = VSUB(Tp, To);
Ts = VSUB(Te, Th);
ST(&(ii[WS(rs, 1)]), VSUB(Tr, Ts), ms, &(ii[WS(rs, 1)]));
ST(&(ii[WS(rs, 3)]), VADD(Ts, Tr), ms, &(ii[WS(rs, 1)]));
}
}
}
}
VLEAVE();
}
static const tw_instr twinstr[] = {
VTW(0, 1),
VTW(0, 3),
{ TW_NEXT, (2 * VL), 0 }
};
static const ct_desc desc = { 4, XSIMD_STRING("t2sv_4"), twinstr, &GENUS, { 16, 8, 8, 0 }, 0, 0, 0 };
void XSIMD(codelet_t2sv_4) (planner *p) {
X(kdft_dit_register) (p, t2sv_4, &desc);
}
#endif