furnace/extern/fftw/dft/simd/common/n1bv_10.c

231 lines
8.3 KiB
C

/*
* Copyright (c) 2003, 2007-14 Matteo Frigo
* Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
*/
/* This file was automatically generated --- DO NOT EDIT */
/* Generated on Tue Sep 14 10:45:03 EDT 2021 */
#include "dft/codelet-dft.h"
#if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
/* Generated by: ../../../genfft/gen_notw_c.native -fma -simd -compact -variables 4 -pipeline-latency 8 -sign 1 -n 10 -name n1bv_10 -include dft/simd/n1b.h */
/*
* This function contains 42 FP additions, 22 FP multiplications,
* (or, 24 additions, 4 multiplications, 18 fused multiply/add),
* 33 stack variables, 4 constants, and 20 memory accesses
*/
#include "dft/simd/n1b.h"
static void n1bv_10(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs)
{
DVK(KP559016994, +0.559016994374947424102293417182819058860154590);
DVK(KP250000000, +0.250000000000000000000000000000000000000000000);
DVK(KP618033988, +0.618033988749894848204586834365638117720309180);
DVK(KP951056516, +0.951056516295153572116439333379382143405698634);
{
INT i;
const R *xi;
R *xo;
xi = ii;
xo = io;
for (i = v; i > 0; i = i - VL, xi = xi + (VL * ivs), xo = xo + (VL * ovs), MAKE_VOLATILE_STRIDE(20, is), MAKE_VOLATILE_STRIDE(20, os)) {
V T3, Tr, Tm, Tn, TD, TC, Tu, Tx, Ty, Ta, Th, Ti, T1, T2;
T1 = LD(&(xi[0]), ivs, &(xi[0]));
T2 = LD(&(xi[WS(is, 5)]), ivs, &(xi[WS(is, 1)]));
T3 = VSUB(T1, T2);
Tr = VADD(T1, T2);
{
V T6, Ts, Tg, Tw, T9, Tt, Td, Tv;
{
V T4, T5, Te, Tf;
T4 = LD(&(xi[WS(is, 2)]), ivs, &(xi[0]));
T5 = LD(&(xi[WS(is, 7)]), ivs, &(xi[WS(is, 1)]));
T6 = VSUB(T4, T5);
Ts = VADD(T4, T5);
Te = LD(&(xi[WS(is, 6)]), ivs, &(xi[0]));
Tf = LD(&(xi[WS(is, 1)]), ivs, &(xi[WS(is, 1)]));
Tg = VSUB(Te, Tf);
Tw = VADD(Te, Tf);
}
{
V T7, T8, Tb, Tc;
T7 = LD(&(xi[WS(is, 8)]), ivs, &(xi[0]));
T8 = LD(&(xi[WS(is, 3)]), ivs, &(xi[WS(is, 1)]));
T9 = VSUB(T7, T8);
Tt = VADD(T7, T8);
Tb = LD(&(xi[WS(is, 4)]), ivs, &(xi[0]));
Tc = LD(&(xi[WS(is, 9)]), ivs, &(xi[WS(is, 1)]));
Td = VSUB(Tb, Tc);
Tv = VADD(Tb, Tc);
}
Tm = VSUB(T6, T9);
Tn = VSUB(Td, Tg);
TD = VSUB(Ts, Tt);
TC = VSUB(Tv, Tw);
Tu = VADD(Ts, Tt);
Tx = VADD(Tv, Tw);
Ty = VADD(Tu, Tx);
Ta = VADD(T6, T9);
Th = VADD(Td, Tg);
Ti = VADD(Ta, Th);
}
ST(&(xo[WS(os, 5)]), VADD(T3, Ti), ovs, &(xo[WS(os, 1)]));
ST(&(xo[0]), VADD(Tr, Ty), ovs, &(xo[0]));
{
V To, Tq, Tl, Tp, Tj, Tk;
To = VMUL(LDK(KP951056516), VFMA(LDK(KP618033988), Tn, Tm));
Tq = VMUL(LDK(KP951056516), VFNMS(LDK(KP618033988), Tm, Tn));
Tj = VFNMS(LDK(KP250000000), Ti, T3);
Tk = VSUB(Ta, Th);
Tl = VFMA(LDK(KP559016994), Tk, Tj);
Tp = VFNMS(LDK(KP559016994), Tk, Tj);
ST(&(xo[WS(os, 1)]), VFMAI(To, Tl), ovs, &(xo[WS(os, 1)]));
ST(&(xo[WS(os, 7)]), VFNMSI(Tq, Tp), ovs, &(xo[WS(os, 1)]));
ST(&(xo[WS(os, 9)]), VFNMSI(To, Tl), ovs, &(xo[WS(os, 1)]));
ST(&(xo[WS(os, 3)]), VFMAI(Tq, Tp), ovs, &(xo[WS(os, 1)]));
}
{
V TE, TG, TB, TF, Tz, TA;
TE = VMUL(LDK(KP951056516), VFNMS(LDK(KP618033988), TD, TC));
TG = VMUL(LDK(KP951056516), VFMA(LDK(KP618033988), TC, TD));
Tz = VFNMS(LDK(KP250000000), Ty, Tr);
TA = VSUB(Tu, Tx);
TB = VFNMS(LDK(KP559016994), TA, Tz);
TF = VFMA(LDK(KP559016994), TA, Tz);
ST(&(xo[WS(os, 2)]), VFNMSI(TE, TB), ovs, &(xo[0]));
ST(&(xo[WS(os, 6)]), VFMAI(TG, TF), ovs, &(xo[0]));
ST(&(xo[WS(os, 8)]), VFMAI(TE, TB), ovs, &(xo[0]));
ST(&(xo[WS(os, 4)]), VFNMSI(TG, TF), ovs, &(xo[0]));
}
}
}
VLEAVE();
}
static const kdft_desc desc = { 10, XSIMD_STRING("n1bv_10"), { 24, 4, 18, 0 }, &GENUS, 0, 0, 0, 0 };
void XSIMD(codelet_n1bv_10) (planner *p) { X(kdft_register) (p, n1bv_10, &desc);
}
#else
/* Generated by: ../../../genfft/gen_notw_c.native -simd -compact -variables 4 -pipeline-latency 8 -sign 1 -n 10 -name n1bv_10 -include dft/simd/n1b.h */
/*
* This function contains 42 FP additions, 12 FP multiplications,
* (or, 36 additions, 6 multiplications, 6 fused multiply/add),
* 33 stack variables, 4 constants, and 20 memory accesses
*/
#include "dft/simd/n1b.h"
static void n1bv_10(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs)
{
DVK(KP250000000, +0.250000000000000000000000000000000000000000000);
DVK(KP559016994, +0.559016994374947424102293417182819058860154590);
DVK(KP587785252, +0.587785252292473129168705954639072768597652438);
DVK(KP951056516, +0.951056516295153572116439333379382143405698634);
{
INT i;
const R *xi;
R *xo;
xi = ii;
xo = io;
for (i = v; i > 0; i = i - VL, xi = xi + (VL * ivs), xo = xo + (VL * ovs), MAKE_VOLATILE_STRIDE(20, is), MAKE_VOLATILE_STRIDE(20, os)) {
V Tl, Ty, T7, Te, Tw, Tt, Tz, TA, TB, Tg, Th, Tm, Tj, Tk;
Tj = LD(&(xi[0]), ivs, &(xi[0]));
Tk = LD(&(xi[WS(is, 5)]), ivs, &(xi[WS(is, 1)]));
Tl = VSUB(Tj, Tk);
Ty = VADD(Tj, Tk);
{
V T3, Tr, Td, Tv, T6, Ts, Ta, Tu;
{
V T1, T2, Tb, Tc;
T1 = LD(&(xi[WS(is, 2)]), ivs, &(xi[0]));
T2 = LD(&(xi[WS(is, 7)]), ivs, &(xi[WS(is, 1)]));
T3 = VSUB(T1, T2);
Tr = VADD(T1, T2);
Tb = LD(&(xi[WS(is, 6)]), ivs, &(xi[0]));
Tc = LD(&(xi[WS(is, 1)]), ivs, &(xi[WS(is, 1)]));
Td = VSUB(Tb, Tc);
Tv = VADD(Tb, Tc);
}
{
V T4, T5, T8, T9;
T4 = LD(&(xi[WS(is, 8)]), ivs, &(xi[0]));
T5 = LD(&(xi[WS(is, 3)]), ivs, &(xi[WS(is, 1)]));
T6 = VSUB(T4, T5);
Ts = VADD(T4, T5);
T8 = LD(&(xi[WS(is, 4)]), ivs, &(xi[0]));
T9 = LD(&(xi[WS(is, 9)]), ivs, &(xi[WS(is, 1)]));
Ta = VSUB(T8, T9);
Tu = VADD(T8, T9);
}
T7 = VSUB(T3, T6);
Te = VSUB(Ta, Td);
Tw = VSUB(Tu, Tv);
Tt = VSUB(Tr, Ts);
Tz = VADD(Tr, Ts);
TA = VADD(Tu, Tv);
TB = VADD(Tz, TA);
Tg = VADD(T3, T6);
Th = VADD(Ta, Td);
Tm = VADD(Tg, Th);
}
ST(&(xo[WS(os, 5)]), VADD(Tl, Tm), ovs, &(xo[WS(os, 1)]));
ST(&(xo[0]), VADD(Ty, TB), ovs, &(xo[0]));
{
V Tf, Tq, To, Tp, Ti, Tn;
Tf = VBYI(VFMA(LDK(KP951056516), T7, VMUL(LDK(KP587785252), Te)));
Tq = VBYI(VFNMS(LDK(KP951056516), Te, VMUL(LDK(KP587785252), T7)));
Ti = VMUL(LDK(KP559016994), VSUB(Tg, Th));
Tn = VFNMS(LDK(KP250000000), Tm, Tl);
To = VADD(Ti, Tn);
Tp = VSUB(Tn, Ti);
ST(&(xo[WS(os, 1)]), VADD(Tf, To), ovs, &(xo[WS(os, 1)]));
ST(&(xo[WS(os, 7)]), VADD(Tq, Tp), ovs, &(xo[WS(os, 1)]));
ST(&(xo[WS(os, 9)]), VSUB(To, Tf), ovs, &(xo[WS(os, 1)]));
ST(&(xo[WS(os, 3)]), VSUB(Tp, Tq), ovs, &(xo[WS(os, 1)]));
}
{
V Tx, TG, TE, TF, TC, TD;
Tx = VBYI(VFNMS(LDK(KP951056516), Tw, VMUL(LDK(KP587785252), Tt)));
TG = VBYI(VFMA(LDK(KP951056516), Tt, VMUL(LDK(KP587785252), Tw)));
TC = VFNMS(LDK(KP250000000), TB, Ty);
TD = VMUL(LDK(KP559016994), VSUB(Tz, TA));
TE = VSUB(TC, TD);
TF = VADD(TD, TC);
ST(&(xo[WS(os, 2)]), VADD(Tx, TE), ovs, &(xo[0]));
ST(&(xo[WS(os, 6)]), VADD(TG, TF), ovs, &(xo[0]));
ST(&(xo[WS(os, 8)]), VSUB(TE, Tx), ovs, &(xo[0]));
ST(&(xo[WS(os, 4)]), VSUB(TF, TG), ovs, &(xo[0]));
}
}
}
VLEAVE();
}
static const kdft_desc desc = { 10, XSIMD_STRING("n1bv_10"), { 36, 6, 6, 0 }, &GENUS, 0, 0, 0, 0 };
void XSIMD(codelet_n1bv_10) (planner *p) { X(kdft_register) (p, n1bv_10, &desc);
}
#endif