furnace/extern/fftw/rdft/scalar/r2cf/hf_16.c
2022-05-31 03:24:29 -05:00

796 lines
20 KiB
C

/*
* Copyright (c) 2003, 2007-14 Matteo Frigo
* Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
*/
/* This file was automatically generated --- DO NOT EDIT */
/* Generated on Tue Sep 14 10:46:14 EDT 2021 */
#include "rdft/codelet-rdft.h"
#if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
/* Generated by: ../../../genfft/gen_hc2hc.native -fma -compact -variables 4 -pipeline-latency 4 -n 16 -dit -name hf_16 -include rdft/scalar/hf.h */
/*
* This function contains 174 FP additions, 100 FP multiplications,
* (or, 104 additions, 30 multiplications, 70 fused multiply/add),
* 60 stack variables, 3 constants, and 64 memory accesses
*/
#include "rdft/scalar/hf.h"
static void hf_16(R *cr, R *ci, const R *W, stride rs, INT mb, INT me, INT ms)
{
DK(KP923879532, +0.923879532511286756128183189396788286822416626);
DK(KP414213562, +0.414213562373095048801688724209698078569671875);
DK(KP707106781, +0.707106781186547524400844362104849039284835938);
{
INT m;
for (m = mb, W = W + ((mb - 1) * 30); m < me; m = m + 1, cr = cr + ms, ci = ci - ms, W = W + 30, MAKE_VOLATILE_STRIDE(32, rs)) {
E T8, T3A, T1I, T3o, T1s, T35, T2k, T2w, T1F, T36, T2p, T2r, Tl, T3z, T1N;
E T3k, Tz, T2W, T1P, T1U, T11, T30, T25, T2g, T1e, T31, T2a, T2h, TM, T2V;
E T1W, T21;
{
E T1, T3n, T3, T6, T4, T3l, T2, T7, T3m, T5;
T1 = cr[0];
T3n = ci[0];
T3 = cr[WS(rs, 8)];
T6 = ci[WS(rs, 8)];
T2 = W[14];
T4 = T2 * T3;
T3l = T2 * T6;
T5 = W[15];
T7 = FMA(T5, T6, T4);
T3m = FNMS(T5, T3, T3l);
T8 = T1 + T7;
T3A = T3n - T3m;
T1I = T1 - T7;
T3o = T3m + T3n;
}
{
E T1h, T1k, T1i, T2s, T1n, T1q, T1o, T2u, T1g, T1m;
T1h = cr[WS(rs, 15)];
T1k = ci[WS(rs, 15)];
T1g = W[28];
T1i = T1g * T1h;
T2s = T1g * T1k;
T1n = cr[WS(rs, 7)];
T1q = ci[WS(rs, 7)];
T1m = W[12];
T1o = T1m * T1n;
T2u = T1m * T1q;
{
E T1l, T2t, T1r, T2v, T1j, T1p;
T1j = W[29];
T1l = FMA(T1j, T1k, T1i);
T2t = FNMS(T1j, T1h, T2s);
T1p = W[13];
T1r = FMA(T1p, T1q, T1o);
T2v = FNMS(T1p, T1n, T2u);
T1s = T1l + T1r;
T35 = T2t + T2v;
T2k = T1l - T1r;
T2w = T2t - T2v;
}
}
{
E T1u, T1x, T1v, T2l, T1A, T1D, T1B, T2n, T1t, T1z;
T1u = cr[WS(rs, 3)];
T1x = ci[WS(rs, 3)];
T1t = W[4];
T1v = T1t * T1u;
T2l = T1t * T1x;
T1A = cr[WS(rs, 11)];
T1D = ci[WS(rs, 11)];
T1z = W[20];
T1B = T1z * T1A;
T2n = T1z * T1D;
{
E T1y, T2m, T1E, T2o, T1w, T1C;
T1w = W[5];
T1y = FMA(T1w, T1x, T1v);
T2m = FNMS(T1w, T1u, T2l);
T1C = W[21];
T1E = FMA(T1C, T1D, T1B);
T2o = FNMS(T1C, T1A, T2n);
T1F = T1y + T1E;
T36 = T2m + T2o;
T2p = T2m - T2o;
T2r = T1E - T1y;
}
}
{
E Ta, Td, Tb, T1J, Tg, Tj, Th, T1L, T9, Tf;
Ta = cr[WS(rs, 4)];
Td = ci[WS(rs, 4)];
T9 = W[6];
Tb = T9 * Ta;
T1J = T9 * Td;
Tg = cr[WS(rs, 12)];
Tj = ci[WS(rs, 12)];
Tf = W[22];
Th = Tf * Tg;
T1L = Tf * Tj;
{
E Te, T1K, Tk, T1M, Tc, Ti;
Tc = W[7];
Te = FMA(Tc, Td, Tb);
T1K = FNMS(Tc, Ta, T1J);
Ti = W[23];
Tk = FMA(Ti, Tj, Th);
T1M = FNMS(Ti, Tg, T1L);
Tl = Te + Tk;
T3z = Te - Tk;
T1N = T1K - T1M;
T3k = T1K + T1M;
}
}
{
E To, Tr, Tp, T1Q, Tu, Tx, Tv, T1S, Tn, Tt;
To = cr[WS(rs, 2)];
Tr = ci[WS(rs, 2)];
Tn = W[2];
Tp = Tn * To;
T1Q = Tn * Tr;
Tu = cr[WS(rs, 10)];
Tx = ci[WS(rs, 10)];
Tt = W[18];
Tv = Tt * Tu;
T1S = Tt * Tx;
{
E Ts, T1R, Ty, T1T, Tq, Tw;
Tq = W[3];
Ts = FMA(Tq, Tr, Tp);
T1R = FNMS(Tq, To, T1Q);
Tw = W[19];
Ty = FMA(Tw, Tx, Tv);
T1T = FNMS(Tw, Tu, T1S);
Tz = Ts + Ty;
T2W = T1R + T1T;
T1P = Ts - Ty;
T1U = T1R - T1T;
}
}
{
E TQ, TT, TR, T2c, TW, TZ, TX, T2e, TP, TV;
TQ = cr[WS(rs, 1)];
TT = ci[WS(rs, 1)];
TP = W[0];
TR = TP * TQ;
T2c = TP * TT;
TW = cr[WS(rs, 9)];
TZ = ci[WS(rs, 9)];
TV = W[16];
TX = TV * TW;
T2e = TV * TZ;
{
E TU, T2d, T10, T2f, TS, TY;
TS = W[1];
TU = FMA(TS, TT, TR);
T2d = FNMS(TS, TQ, T2c);
TY = W[17];
T10 = FMA(TY, TZ, TX);
T2f = FNMS(TY, TW, T2e);
T11 = TU + T10;
T30 = T2d + T2f;
T25 = TU - T10;
T2g = T2d - T2f;
}
}
{
E T13, T16, T14, T26, T19, T1c, T1a, T28, T12, T18;
T13 = cr[WS(rs, 5)];
T16 = ci[WS(rs, 5)];
T12 = W[8];
T14 = T12 * T13;
T26 = T12 * T16;
T19 = cr[WS(rs, 13)];
T1c = ci[WS(rs, 13)];
T18 = W[24];
T1a = T18 * T19;
T28 = T18 * T1c;
{
E T17, T27, T1d, T29, T15, T1b;
T15 = W[9];
T17 = FMA(T15, T16, T14);
T27 = FNMS(T15, T13, T26);
T1b = W[25];
T1d = FMA(T1b, T1c, T1a);
T29 = FNMS(T1b, T19, T28);
T1e = T17 + T1d;
T31 = T27 + T29;
T2a = T27 - T29;
T2h = T17 - T1d;
}
}
{
E TB, TE, TC, T1X, TH, TK, TI, T1Z, TA, TG;
TB = cr[WS(rs, 14)];
TE = ci[WS(rs, 14)];
TA = W[26];
TC = TA * TB;
T1X = TA * TE;
TH = cr[WS(rs, 6)];
TK = ci[WS(rs, 6)];
TG = W[10];
TI = TG * TH;
T1Z = TG * TK;
{
E TF, T1Y, TL, T20, TD, TJ;
TD = W[27];
TF = FMA(TD, TE, TC);
T1Y = FNMS(TD, TB, T1X);
TJ = W[11];
TL = FMA(TJ, TK, TI);
T20 = FNMS(TJ, TH, T1Z);
TM = TF + TL;
T2V = T1Y + T20;
T1W = TF - TL;
T21 = T1Y - T20;
}
}
{
E TO, T3e, T3q, T3s, T1H, T3r, T3h, T3i;
{
E Tm, TN, T3j, T3p;
Tm = T8 + Tl;
TN = Tz + TM;
TO = Tm + TN;
T3e = Tm - TN;
T3j = T2W + T2V;
T3p = T3k + T3o;
T3q = T3j + T3p;
T3s = T3p - T3j;
}
{
E T1f, T1G, T3f, T3g;
T1f = T11 + T1e;
T1G = T1s + T1F;
T1H = T1f + T1G;
T3r = T1G - T1f;
T3f = T35 + T36;
T3g = T30 + T31;
T3h = T3f - T3g;
T3i = T3g + T3f;
}
ci[WS(rs, 7)] = TO - T1H;
cr[WS(rs, 12)] = T3r - T3s;
ci[WS(rs, 11)] = T3r + T3s;
cr[0] = TO + T1H;
cr[WS(rs, 4)] = T3e - T3h;
cr[WS(rs, 8)] = T3i - T3q;
ci[WS(rs, 15)] = T3i + T3q;
ci[WS(rs, 3)] = T3e + T3h;
}
{
E T2Y, T3a, T3v, T3x, T33, T3b, T38, T3c;
{
E T2U, T2X, T3t, T3u;
T2U = T8 - Tl;
T2X = T2V - T2W;
T2Y = T2U - T2X;
T3a = T2U + T2X;
T3t = Tz - TM;
T3u = T3o - T3k;
T3v = T3t + T3u;
T3x = T3u - T3t;
}
{
E T2Z, T32, T34, T37;
T2Z = T11 - T1e;
T32 = T30 - T31;
T33 = T2Z + T32;
T3b = T2Z - T32;
T34 = T1s - T1F;
T37 = T35 - T36;
T38 = T34 - T37;
T3c = T34 + T37;
}
{
E T39, T3y, T3d, T3w;
T39 = T33 + T38;
ci[WS(rs, 5)] = FNMS(KP707106781, T39, T2Y);
cr[WS(rs, 2)] = FMA(KP707106781, T39, T2Y);
T3y = T3c - T3b;
cr[WS(rs, 10)] = FMS(KP707106781, T3y, T3x);
ci[WS(rs, 13)] = FMA(KP707106781, T3y, T3x);
T3d = T3b + T3c;
cr[WS(rs, 6)] = FNMS(KP707106781, T3d, T3a);
ci[WS(rs, 1)] = FMA(KP707106781, T3d, T3a);
T3w = T38 - T33;
cr[WS(rs, 14)] = FMS(KP707106781, T3w, T3v);
ci[WS(rs, 9)] = FMA(KP707106781, T3w, T3v);
}
}
{
E T1O, T3B, T3H, T2E, T23, T3I, T2O, T2R, T2H, T3C, T2j, T2B, T2L, T2S, T2y;
E T2C;
{
E T1V, T22, T2b, T2i;
T1O = T1I - T1N;
T3B = T3z + T3A;
T3H = T3A - T3z;
T2E = T1I + T1N;
T1V = T1P - T1U;
T22 = T1W + T21;
T23 = T1V + T22;
T3I = T22 - T1V;
{
E T2M, T2N, T2F, T2G;
T2M = T2k + T2p;
T2N = T2w + T2r;
T2O = FNMS(KP414213562, T2N, T2M);
T2R = FMA(KP414213562, T2M, T2N);
T2F = T1P + T1U;
T2G = T1W - T21;
T2H = T2F + T2G;
T3C = T2F - T2G;
}
T2b = T25 - T2a;
T2i = T2g + T2h;
T2j = FNMS(KP414213562, T2i, T2b);
T2B = FMA(KP414213562, T2b, T2i);
{
E T2J, T2K, T2q, T2x;
T2J = T25 + T2a;
T2K = T2g - T2h;
T2L = FMA(KP414213562, T2K, T2J);
T2S = FNMS(KP414213562, T2J, T2K);
T2q = T2k - T2p;
T2x = T2r - T2w;
T2y = FNMS(KP414213562, T2x, T2q);
T2C = FMA(KP414213562, T2q, T2x);
}
}
{
E T24, T2z, T3J, T3K;
T24 = FMA(KP707106781, T23, T1O);
T2z = T2j + T2y;
cr[WS(rs, 7)] = FNMS(KP923879532, T2z, T24);
ci[0] = FMA(KP923879532, T2z, T24);
T3J = FMA(KP707106781, T3I, T3H);
T3K = T2S + T2R;
cr[WS(rs, 9)] = FMS(KP923879532, T3K, T3J);
ci[WS(rs, 14)] = FMA(KP923879532, T3K, T3J);
}
{
E T3L, T3M, T2A, T2D;
T3L = FNMS(KP707106781, T3I, T3H);
T3M = T2O - T2L;
cr[WS(rs, 13)] = FMS(KP923879532, T3M, T3L);
ci[WS(rs, 10)] = FMA(KP923879532, T3M, T3L);
T2A = FNMS(KP707106781, T23, T1O);
T2D = T2B + T2C;
ci[WS(rs, 4)] = FNMS(KP923879532, T2D, T2A);
cr[WS(rs, 3)] = FMA(KP923879532, T2D, T2A);
}
{
E T2I, T2P, T3D, T3E;
T2I = FMA(KP707106781, T2H, T2E);
T2P = T2L + T2O;
ci[WS(rs, 6)] = FNMS(KP923879532, T2P, T2I);
cr[WS(rs, 1)] = FMA(KP923879532, T2P, T2I);
T3D = FMA(KP707106781, T3C, T3B);
T3E = T2C - T2B;
cr[WS(rs, 15)] = FMS(KP923879532, T3E, T3D);
ci[WS(rs, 8)] = FMA(KP923879532, T3E, T3D);
}
{
E T3F, T3G, T2Q, T2T;
T3F = FNMS(KP707106781, T3C, T3B);
T3G = T2y - T2j;
cr[WS(rs, 11)] = FMS(KP923879532, T3G, T3F);
ci[WS(rs, 12)] = FMA(KP923879532, T3G, T3F);
T2Q = FNMS(KP707106781, T2H, T2E);
T2T = T2R - T2S;
cr[WS(rs, 5)] = FNMS(KP923879532, T2T, T2Q);
ci[WS(rs, 2)] = FMA(KP923879532, T2T, T2Q);
}
}
}
}
}
static const tw_instr twinstr[] = {
{ TW_FULL, 1, 16 },
{ TW_NEXT, 1, 0 }
};
static const hc2hc_desc desc = { 16, "hf_16", twinstr, &GENUS, { 104, 30, 70, 0 } };
void X(codelet_hf_16) (planner *p) {
X(khc2hc_register) (p, hf_16, &desc);
}
#else
/* Generated by: ../../../genfft/gen_hc2hc.native -compact -variables 4 -pipeline-latency 4 -n 16 -dit -name hf_16 -include rdft/scalar/hf.h */
/*
* This function contains 174 FP additions, 84 FP multiplications,
* (or, 136 additions, 46 multiplications, 38 fused multiply/add),
* 52 stack variables, 3 constants, and 64 memory accesses
*/
#include "rdft/scalar/hf.h"
static void hf_16(R *cr, R *ci, const R *W, stride rs, INT mb, INT me, INT ms)
{
DK(KP382683432, +0.382683432365089771728459984030398866761344562);
DK(KP923879532, +0.923879532511286756128183189396788286822416626);
DK(KP707106781, +0.707106781186547524400844362104849039284835938);
{
INT m;
for (m = mb, W = W + ((mb - 1) * 30); m < me; m = m + 1, cr = cr + ms, ci = ci - ms, W = W + 30, MAKE_VOLATILE_STRIDE(32, rs)) {
E T7, T38, T1t, T2U, Ti, T37, T1w, T2R, Tu, T2t, T1C, T2c, TF, T2s, T1H;
E T2d, T1f, T1q, T2B, T2C, T2D, T2E, T1Z, T2k, T24, T2j, TS, T13, T2w, T2x;
E T2y, T2z, T1O, T2h, T1T, T2g;
{
E T1, T2T, T6, T2S;
T1 = cr[0];
T2T = ci[0];
{
E T3, T5, T2, T4;
T3 = cr[WS(rs, 8)];
T5 = ci[WS(rs, 8)];
T2 = W[14];
T4 = W[15];
T6 = FMA(T2, T3, T4 * T5);
T2S = FNMS(T4, T3, T2 * T5);
}
T7 = T1 + T6;
T38 = T2T - T2S;
T1t = T1 - T6;
T2U = T2S + T2T;
}
{
E Tc, T1u, Th, T1v;
{
E T9, Tb, T8, Ta;
T9 = cr[WS(rs, 4)];
Tb = ci[WS(rs, 4)];
T8 = W[6];
Ta = W[7];
Tc = FMA(T8, T9, Ta * Tb);
T1u = FNMS(Ta, T9, T8 * Tb);
}
{
E Te, Tg, Td, Tf;
Te = cr[WS(rs, 12)];
Tg = ci[WS(rs, 12)];
Td = W[22];
Tf = W[23];
Th = FMA(Td, Te, Tf * Tg);
T1v = FNMS(Tf, Te, Td * Tg);
}
Ti = Tc + Th;
T37 = Tc - Th;
T1w = T1u - T1v;
T2R = T1u + T1v;
}
{
E To, T1z, Tt, T1A, T1y, T1B;
{
E Tl, Tn, Tk, Tm;
Tl = cr[WS(rs, 2)];
Tn = ci[WS(rs, 2)];
Tk = W[2];
Tm = W[3];
To = FMA(Tk, Tl, Tm * Tn);
T1z = FNMS(Tm, Tl, Tk * Tn);
}
{
E Tq, Ts, Tp, Tr;
Tq = cr[WS(rs, 10)];
Ts = ci[WS(rs, 10)];
Tp = W[18];
Tr = W[19];
Tt = FMA(Tp, Tq, Tr * Ts);
T1A = FNMS(Tr, Tq, Tp * Ts);
}
Tu = To + Tt;
T2t = T1z + T1A;
T1y = To - Tt;
T1B = T1z - T1A;
T1C = T1y - T1B;
T2c = T1y + T1B;
}
{
E Tz, T1E, TE, T1F, T1D, T1G;
{
E Tw, Ty, Tv, Tx;
Tw = cr[WS(rs, 14)];
Ty = ci[WS(rs, 14)];
Tv = W[26];
Tx = W[27];
Tz = FMA(Tv, Tw, Tx * Ty);
T1E = FNMS(Tx, Tw, Tv * Ty);
}
{
E TB, TD, TA, TC;
TB = cr[WS(rs, 6)];
TD = ci[WS(rs, 6)];
TA = W[10];
TC = W[11];
TE = FMA(TA, TB, TC * TD);
T1F = FNMS(TC, TB, TA * TD);
}
TF = Tz + TE;
T2s = T1E + T1F;
T1D = Tz - TE;
T1G = T1E - T1F;
T1H = T1D + T1G;
T2d = T1D - T1G;
}
{
E T19, T1V, T1p, T22, T1e, T1W, T1k, T21;
{
E T16, T18, T15, T17;
T16 = cr[WS(rs, 15)];
T18 = ci[WS(rs, 15)];
T15 = W[28];
T17 = W[29];
T19 = FMA(T15, T16, T17 * T18);
T1V = FNMS(T17, T16, T15 * T18);
}
{
E T1m, T1o, T1l, T1n;
T1m = cr[WS(rs, 11)];
T1o = ci[WS(rs, 11)];
T1l = W[20];
T1n = W[21];
T1p = FMA(T1l, T1m, T1n * T1o);
T22 = FNMS(T1n, T1m, T1l * T1o);
}
{
E T1b, T1d, T1a, T1c;
T1b = cr[WS(rs, 7)];
T1d = ci[WS(rs, 7)];
T1a = W[12];
T1c = W[13];
T1e = FMA(T1a, T1b, T1c * T1d);
T1W = FNMS(T1c, T1b, T1a * T1d);
}
{
E T1h, T1j, T1g, T1i;
T1h = cr[WS(rs, 3)];
T1j = ci[WS(rs, 3)];
T1g = W[4];
T1i = W[5];
T1k = FMA(T1g, T1h, T1i * T1j);
T21 = FNMS(T1i, T1h, T1g * T1j);
}
T1f = T19 + T1e;
T1q = T1k + T1p;
T2B = T1f - T1q;
T2C = T1V + T1W;
T2D = T21 + T22;
T2E = T2C - T2D;
{
E T1X, T1Y, T20, T23;
T1X = T1V - T1W;
T1Y = T1k - T1p;
T1Z = T1X + T1Y;
T2k = T1X - T1Y;
T20 = T19 - T1e;
T23 = T21 - T22;
T24 = T20 - T23;
T2j = T20 + T23;
}
}
{
E TM, T1P, T12, T1M, TR, T1Q, TX, T1L;
{
E TJ, TL, TI, TK;
TJ = cr[WS(rs, 1)];
TL = ci[WS(rs, 1)];
TI = W[0];
TK = W[1];
TM = FMA(TI, TJ, TK * TL);
T1P = FNMS(TK, TJ, TI * TL);
}
{
E TZ, T11, TY, T10;
TZ = cr[WS(rs, 13)];
T11 = ci[WS(rs, 13)];
TY = W[24];
T10 = W[25];
T12 = FMA(TY, TZ, T10 * T11);
T1M = FNMS(T10, TZ, TY * T11);
}
{
E TO, TQ, TN, TP;
TO = cr[WS(rs, 9)];
TQ = ci[WS(rs, 9)];
TN = W[16];
TP = W[17];
TR = FMA(TN, TO, TP * TQ);
T1Q = FNMS(TP, TO, TN * TQ);
}
{
E TU, TW, TT, TV;
TU = cr[WS(rs, 5)];
TW = ci[WS(rs, 5)];
TT = W[8];
TV = W[9];
TX = FMA(TT, TU, TV * TW);
T1L = FNMS(TV, TU, TT * TW);
}
TS = TM + TR;
T13 = TX + T12;
T2w = TS - T13;
T2x = T1P + T1Q;
T2y = T1L + T1M;
T2z = T2x - T2y;
{
E T1K, T1N, T1R, T1S;
T1K = TM - TR;
T1N = T1L - T1M;
T1O = T1K - T1N;
T2h = T1K + T1N;
T1R = T1P - T1Q;
T1S = TX - T12;
T1T = T1R + T1S;
T2g = T1R - T1S;
}
}
{
E T1J, T27, T3a, T3c, T26, T3b, T2a, T35;
{
E T1x, T1I, T36, T39;
T1x = T1t - T1w;
T1I = KP707106781 * (T1C + T1H);
T1J = T1x + T1I;
T27 = T1x - T1I;
T36 = KP707106781 * (T2c - T2d);
T39 = T37 + T38;
T3a = T36 + T39;
T3c = T39 - T36;
}
{
E T1U, T25, T28, T29;
T1U = FNMS(KP382683432, T1T, KP923879532 * T1O);
T25 = FMA(KP382683432, T1Z, KP923879532 * T24);
T26 = T1U + T25;
T3b = T25 - T1U;
T28 = FMA(KP923879532, T1T, KP382683432 * T1O);
T29 = FNMS(KP923879532, T1Z, KP382683432 * T24);
T2a = T28 + T29;
T35 = T29 - T28;
}
cr[WS(rs, 7)] = T1J - T26;
cr[WS(rs, 11)] = T3b - T3c;
ci[WS(rs, 12)] = T3b + T3c;
ci[0] = T1J + T26;
ci[WS(rs, 4)] = T27 - T2a;
cr[WS(rs, 15)] = T35 - T3a;
ci[WS(rs, 8)] = T35 + T3a;
cr[WS(rs, 3)] = T27 + T2a;
}
{
E TH, T2L, T2W, T2Y, T1s, T2X, T2O, T2P;
{
E Tj, TG, T2Q, T2V;
Tj = T7 + Ti;
TG = Tu + TF;
TH = Tj + TG;
T2L = Tj - TG;
T2Q = T2t + T2s;
T2V = T2R + T2U;
T2W = T2Q + T2V;
T2Y = T2V - T2Q;
}
{
E T14, T1r, T2M, T2N;
T14 = TS + T13;
T1r = T1f + T1q;
T1s = T14 + T1r;
T2X = T1r - T14;
T2M = T2C + T2D;
T2N = T2x + T2y;
T2O = T2M - T2N;
T2P = T2N + T2M;
}
ci[WS(rs, 7)] = TH - T1s;
cr[WS(rs, 12)] = T2X - T2Y;
ci[WS(rs, 11)] = T2X + T2Y;
cr[0] = TH + T1s;
cr[WS(rs, 4)] = T2L - T2O;
cr[WS(rs, 8)] = T2P - T2W;
ci[WS(rs, 15)] = T2P + T2W;
ci[WS(rs, 3)] = T2L + T2O;
}
{
E T2f, T2n, T3g, T3i, T2m, T3h, T2q, T3d;
{
E T2b, T2e, T3e, T3f;
T2b = T1t + T1w;
T2e = KP707106781 * (T2c + T2d);
T2f = T2b + T2e;
T2n = T2b - T2e;
T3e = KP707106781 * (T1H - T1C);
T3f = T38 - T37;
T3g = T3e + T3f;
T3i = T3f - T3e;
}
{
E T2i, T2l, T2o, T2p;
T2i = FMA(KP382683432, T2g, KP923879532 * T2h);
T2l = FNMS(KP382683432, T2k, KP923879532 * T2j);
T2m = T2i + T2l;
T3h = T2l - T2i;
T2o = FNMS(KP923879532, T2g, KP382683432 * T2h);
T2p = FMA(KP923879532, T2k, KP382683432 * T2j);
T2q = T2o + T2p;
T3d = T2p - T2o;
}
ci[WS(rs, 6)] = T2f - T2m;
cr[WS(rs, 13)] = T3h - T3i;
ci[WS(rs, 10)] = T3h + T3i;
cr[WS(rs, 1)] = T2f + T2m;
cr[WS(rs, 5)] = T2n - T2q;
cr[WS(rs, 9)] = T3d - T3g;
ci[WS(rs, 14)] = T3d + T3g;
ci[WS(rs, 2)] = T2n + T2q;
}
{
E T2v, T2H, T32, T34, T2G, T2Z, T2K, T33;
{
E T2r, T2u, T30, T31;
T2r = T7 - Ti;
T2u = T2s - T2t;
T2v = T2r - T2u;
T2H = T2r + T2u;
T30 = Tu - TF;
T31 = T2U - T2R;
T32 = T30 + T31;
T34 = T31 - T30;
}
{
E T2A, T2F, T2I, T2J;
T2A = T2w + T2z;
T2F = T2B - T2E;
T2G = KP707106781 * (T2A + T2F);
T2Z = KP707106781 * (T2F - T2A);
T2I = T2w - T2z;
T2J = T2B + T2E;
T2K = KP707106781 * (T2I + T2J);
T33 = KP707106781 * (T2J - T2I);
}
ci[WS(rs, 5)] = T2v - T2G;
cr[WS(rs, 10)] = T33 - T34;
ci[WS(rs, 13)] = T33 + T34;
cr[WS(rs, 2)] = T2v + T2G;
cr[WS(rs, 6)] = T2H - T2K;
cr[WS(rs, 14)] = T2Z - T32;
ci[WS(rs, 9)] = T2Z + T32;
ci[WS(rs, 1)] = T2H + T2K;
}
}
}
}
static const tw_instr twinstr[] = {
{ TW_FULL, 1, 16 },
{ TW_NEXT, 1, 0 }
};
static const hc2hc_desc desc = { 16, "hf_16", twinstr, &GENUS, { 136, 46, 38, 0 } };
void X(codelet_hf_16) (planner *p) {
X(khc2hc_register) (p, hf_16, &desc);
}
#endif