mirror of
https://github.com/tildearrow/furnace.git
synced 2024-11-01 18:42:40 +00:00
54e93db207
not reliable yet
292 lines
7.7 KiB
C
292 lines
7.7 KiB
C
/*
|
|
* Copyright (c) 2003, 2007-14 Matteo Frigo
|
|
* Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
|
*
|
|
*/
|
|
|
|
/* This file was automatically generated --- DO NOT EDIT */
|
|
/* Generated on Tue Sep 14 10:47:07 EDT 2021 */
|
|
|
|
#include "rdft/codelet-rdft.h"
|
|
|
|
#if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
|
|
|
|
/* Generated by: ../../../genfft/gen_hc2c.native -fma -compact -variables 4 -pipeline-latency 4 -sign 1 -n 6 -dif -name hc2cb_6 -include rdft/scalar/hc2cb.h */
|
|
|
|
/*
|
|
* This function contains 46 FP additions, 32 FP multiplications,
|
|
* (or, 24 additions, 10 multiplications, 22 fused multiply/add),
|
|
* 31 stack variables, 2 constants, and 24 memory accesses
|
|
*/
|
|
#include "rdft/scalar/hc2cb.h"
|
|
|
|
static void hc2cb_6(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
|
|
{
|
|
DK(KP866025403, +0.866025403784438646763723170752936183471402627);
|
|
DK(KP500000000, +0.500000000000000000000000000000000000000000000);
|
|
{
|
|
INT m;
|
|
for (m = mb, W = W + ((mb - 1) * 10); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 10, MAKE_VOLATILE_STRIDE(24, rs)) {
|
|
E Td, Tn, TO, TJ, TN, Tk, Tr, T3, TC, Ts, TQ, Ta, Tm, TF, TG;
|
|
{
|
|
E Tb, Tc, Tj, TI, Tg, TH;
|
|
Tb = Ip[0];
|
|
Tc = Im[WS(rs, 2)];
|
|
Td = Tb - Tc;
|
|
{
|
|
E Th, Ti, Te, Tf;
|
|
Th = Ip[WS(rs, 1)];
|
|
Ti = Im[WS(rs, 1)];
|
|
Tj = Th - Ti;
|
|
TI = Th + Ti;
|
|
Te = Ip[WS(rs, 2)];
|
|
Tf = Im[0];
|
|
Tg = Te - Tf;
|
|
TH = Te + Tf;
|
|
}
|
|
Tn = Tj - Tg;
|
|
TO = TH - TI;
|
|
TJ = TH + TI;
|
|
TN = Tb + Tc;
|
|
Tk = Tg + Tj;
|
|
Tr = FNMS(KP500000000, Tk, Td);
|
|
}
|
|
{
|
|
E T9, TE, T6, TD, T1, T2;
|
|
T1 = Rp[0];
|
|
T2 = Rm[WS(rs, 2)];
|
|
T3 = T1 + T2;
|
|
TC = T1 - T2;
|
|
{
|
|
E T7, T8, T4, T5;
|
|
T7 = Rm[WS(rs, 1)];
|
|
T8 = Rp[WS(rs, 1)];
|
|
T9 = T7 + T8;
|
|
TE = T7 - T8;
|
|
T4 = Rp[WS(rs, 2)];
|
|
T5 = Rm[0];
|
|
T6 = T4 + T5;
|
|
TD = T4 - T5;
|
|
}
|
|
Ts = T6 - T9;
|
|
TQ = TD - TE;
|
|
Ta = T6 + T9;
|
|
Tm = FNMS(KP500000000, Ta, T3);
|
|
TF = TD + TE;
|
|
TG = FNMS(KP500000000, TF, TC);
|
|
}
|
|
Rp[0] = T3 + Ta;
|
|
Rm[0] = Td + Tk;
|
|
{
|
|
E To, Tt, Tp, Tu, Tl, Tq;
|
|
To = FNMS(KP866025403, Tn, Tm);
|
|
Tt = FNMS(KP866025403, Ts, Tr);
|
|
Tl = W[2];
|
|
Tp = Tl * To;
|
|
Tu = Tl * Tt;
|
|
Tq = W[3];
|
|
Rp[WS(rs, 1)] = FNMS(Tq, Tt, Tp);
|
|
Rm[WS(rs, 1)] = FMA(Tq, To, Tu);
|
|
}
|
|
{
|
|
E T13, TZ, T11, T12, T14, T10;
|
|
T13 = TN + TO;
|
|
T10 = TC + TF;
|
|
TZ = W[4];
|
|
T11 = TZ * T10;
|
|
T12 = W[5];
|
|
T14 = T12 * T10;
|
|
Ip[WS(rs, 1)] = FNMS(T12, T13, T11);
|
|
Im[WS(rs, 1)] = FMA(TZ, T13, T14);
|
|
}
|
|
{
|
|
E Tw, Tz, Tx, TA, Tv, Ty;
|
|
Tw = FMA(KP866025403, Tn, Tm);
|
|
Tz = FMA(KP866025403, Ts, Tr);
|
|
Tv = W[6];
|
|
Tx = Tv * Tw;
|
|
TA = Tv * Tz;
|
|
Ty = W[7];
|
|
Rp[WS(rs, 2)] = FNMS(Ty, Tz, Tx);
|
|
Rm[WS(rs, 2)] = FMA(Ty, Tw, TA);
|
|
}
|
|
{
|
|
E TR, TX, TT, TV, TW, TY, TB, TL, TM, TS, TP, TU, TK;
|
|
TP = FNMS(KP500000000, TO, TN);
|
|
TR = FMA(KP866025403, TQ, TP);
|
|
TX = FNMS(KP866025403, TQ, TP);
|
|
TU = FMA(KP866025403, TJ, TG);
|
|
TT = W[8];
|
|
TV = TT * TU;
|
|
TW = W[9];
|
|
TY = TW * TU;
|
|
TK = FNMS(KP866025403, TJ, TG);
|
|
TB = W[0];
|
|
TL = TB * TK;
|
|
TM = W[1];
|
|
TS = TM * TK;
|
|
Ip[0] = FNMS(TM, TR, TL);
|
|
Im[0] = FMA(TB, TR, TS);
|
|
Ip[WS(rs, 2)] = FNMS(TW, TX, TV);
|
|
Im[WS(rs, 2)] = FMA(TT, TX, TY);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static const tw_instr twinstr[] = {
|
|
{ TW_FULL, 1, 6 },
|
|
{ TW_NEXT, 1, 0 }
|
|
};
|
|
|
|
static const hc2c_desc desc = { 6, "hc2cb_6", twinstr, &GENUS, { 24, 10, 22, 0 } };
|
|
|
|
void X(codelet_hc2cb_6) (planner *p) {
|
|
X(khc2c_register) (p, hc2cb_6, &desc, HC2C_VIA_RDFT);
|
|
}
|
|
#else
|
|
|
|
/* Generated by: ../../../genfft/gen_hc2c.native -compact -variables 4 -pipeline-latency 4 -sign 1 -n 6 -dif -name hc2cb_6 -include rdft/scalar/hc2cb.h */
|
|
|
|
/*
|
|
* This function contains 46 FP additions, 28 FP multiplications,
|
|
* (or, 32 additions, 14 multiplications, 14 fused multiply/add),
|
|
* 25 stack variables, 2 constants, and 24 memory accesses
|
|
*/
|
|
#include "rdft/scalar/hc2cb.h"
|
|
|
|
static void hc2cb_6(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
|
|
{
|
|
DK(KP500000000, +0.500000000000000000000000000000000000000000000);
|
|
DK(KP866025403, +0.866025403784438646763723170752936183471402627);
|
|
{
|
|
INT m;
|
|
for (m = mb, W = W + ((mb - 1) * 10); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 10, MAKE_VOLATILE_STRIDE(24, rs)) {
|
|
E T3, Ty, Td, TE, Ta, TO, Tr, TB, Tk, TL, Tn, TH;
|
|
{
|
|
E T1, T2, Tb, Tc;
|
|
T1 = Rp[0];
|
|
T2 = Rm[WS(rs, 2)];
|
|
T3 = T1 + T2;
|
|
Ty = T1 - T2;
|
|
Tb = Ip[0];
|
|
Tc = Im[WS(rs, 2)];
|
|
Td = Tb - Tc;
|
|
TE = Tb + Tc;
|
|
}
|
|
{
|
|
E T6, Tz, T9, TA;
|
|
{
|
|
E T4, T5, T7, T8;
|
|
T4 = Rp[WS(rs, 2)];
|
|
T5 = Rm[0];
|
|
T6 = T4 + T5;
|
|
Tz = T4 - T5;
|
|
T7 = Rm[WS(rs, 1)];
|
|
T8 = Rp[WS(rs, 1)];
|
|
T9 = T7 + T8;
|
|
TA = T7 - T8;
|
|
}
|
|
Ta = T6 + T9;
|
|
TO = KP866025403 * (Tz - TA);
|
|
Tr = KP866025403 * (T6 - T9);
|
|
TB = Tz + TA;
|
|
}
|
|
{
|
|
E Tg, TG, Tj, TF;
|
|
{
|
|
E Te, Tf, Th, Ti;
|
|
Te = Ip[WS(rs, 2)];
|
|
Tf = Im[0];
|
|
Tg = Te - Tf;
|
|
TG = Te + Tf;
|
|
Th = Ip[WS(rs, 1)];
|
|
Ti = Im[WS(rs, 1)];
|
|
Tj = Th - Ti;
|
|
TF = Th + Ti;
|
|
}
|
|
Tk = Tg + Tj;
|
|
TL = KP866025403 * (TG + TF);
|
|
Tn = KP866025403 * (Tj - Tg);
|
|
TH = TF - TG;
|
|
}
|
|
Rp[0] = T3 + Ta;
|
|
Rm[0] = Td + Tk;
|
|
{
|
|
E TC, TI, Tx, TD;
|
|
TC = Ty + TB;
|
|
TI = TE - TH;
|
|
Tx = W[4];
|
|
TD = W[5];
|
|
Ip[WS(rs, 1)] = FNMS(TD, TI, Tx * TC);
|
|
Im[WS(rs, 1)] = FMA(TD, TC, Tx * TI);
|
|
}
|
|
{
|
|
E To, Tu, Ts, Tw, Tm, Tq;
|
|
Tm = FNMS(KP500000000, Ta, T3);
|
|
To = Tm - Tn;
|
|
Tu = Tm + Tn;
|
|
Tq = FNMS(KP500000000, Tk, Td);
|
|
Ts = Tq - Tr;
|
|
Tw = Tr + Tq;
|
|
{
|
|
E Tl, Tp, Tt, Tv;
|
|
Tl = W[2];
|
|
Tp = W[3];
|
|
Rp[WS(rs, 1)] = FNMS(Tp, Ts, Tl * To);
|
|
Rm[WS(rs, 1)] = FMA(Tl, Ts, Tp * To);
|
|
Tt = W[6];
|
|
Tv = W[7];
|
|
Rp[WS(rs, 2)] = FNMS(Tv, Tw, Tt * Tu);
|
|
Rm[WS(rs, 2)] = FMA(Tt, Tw, Tv * Tu);
|
|
}
|
|
}
|
|
{
|
|
E TM, TS, TQ, TU, TK, TP;
|
|
TK = FNMS(KP500000000, TB, Ty);
|
|
TM = TK - TL;
|
|
TS = TK + TL;
|
|
TP = FMA(KP500000000, TH, TE);
|
|
TQ = TO + TP;
|
|
TU = TP - TO;
|
|
{
|
|
E TJ, TN, TR, TT;
|
|
TJ = W[0];
|
|
TN = W[1];
|
|
Ip[0] = FNMS(TN, TQ, TJ * TM);
|
|
Im[0] = FMA(TN, TM, TJ * TQ);
|
|
TR = W[8];
|
|
TT = W[9];
|
|
Ip[WS(rs, 2)] = FNMS(TT, TU, TR * TS);
|
|
Im[WS(rs, 2)] = FMA(TT, TS, TR * TU);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static const tw_instr twinstr[] = {
|
|
{ TW_FULL, 1, 6 },
|
|
{ TW_NEXT, 1, 0 }
|
|
};
|
|
|
|
static const hc2c_desc desc = { 6, "hc2cb_6", twinstr, &GENUS, { 32, 14, 14, 0 } };
|
|
|
|
void X(codelet_hc2cb_6) (planner *p) {
|
|
X(khc2c_register) (p, hc2cb_6, &desc, HC2C_VIA_RDFT);
|
|
}
|
|
#endif
|