furnace/extern/fftw/rdft/scalar/r2cb/hb2_20.c
2022-05-31 03:24:29 -05:00

1087 lines
30 KiB
C

/*
* Copyright (c) 2003, 2007-14 Matteo Frigo
* Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
*/
/* This file was automatically generated --- DO NOT EDIT */
/* Generated on Tue Sep 14 10:46:57 EDT 2021 */
#include "rdft/codelet-rdft.h"
#if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
/* Generated by: ../../../genfft/gen_hc2hc.native -fma -compact -variables 4 -pipeline-latency 4 -sign 1 -twiddle-log3 -precompute-twiddles -n 20 -dif -name hb2_20 -include rdft/scalar/hb.h */
/*
* This function contains 276 FP additions, 198 FP multiplications,
* (or, 136 additions, 58 multiplications, 140 fused multiply/add),
* 129 stack variables, 4 constants, and 80 memory accesses
*/
#include "rdft/scalar/hb.h"
static void hb2_20(R *cr, R *ci, const R *W, stride rs, INT mb, INT me, INT ms)
{
DK(KP951056516, +0.951056516295153572116439333379382143405698634);
DK(KP559016994, +0.559016994374947424102293417182819058860154590);
DK(KP250000000, +0.250000000000000000000000000000000000000000000);
DK(KP618033988, +0.618033988749894848204586834365638117720309180);
{
INT m;
for (m = mb, W = W + ((mb - 1) * 8); m < me; m = m + 1, cr = cr + ms, ci = ci - ms, W = W + 8, MAKE_VOLATILE_STRIDE(40, rs)) {
E TD, TH, TE, T1L, T1N, T1X, TG, T29, TI, T2b, T1V, T1O, T24, T36, T5b;
E T1S, T1Y, T3b, T3e, T2o, T2Y, T2U, T31, T2s, T4y, T4u, T2f, T2c, T2g, T5g;
E T2k, T1s, T48, T4c, T5q, T5m, T4k, T4f;
{
E T1r, T1M, T2T, T1R, T2X, T23, T2r, T1W, T2n, T2a, TF, T4x;
TD = W[0];
TH = W[3];
TE = W[2];
TF = TD * TE;
T1r = TD * TH;
T1L = W[6];
T1M = TD * T1L;
T2T = TE * T1L;
T1N = W[7];
T1R = TD * T1N;
T2X = TE * T1N;
T1X = W[5];
T23 = TE * T1X;
T2r = TD * T1X;
TG = W[1];
T29 = FNMS(TG, TH, TF);
TI = FMA(TG, TH, TF);
T2b = FMA(TG, TE, T1r);
T1V = W[4];
T1W = TE * T1V;
T2n = TD * T1V;
T2a = T29 * T1V;
T1O = FMA(TG, T1N, T1M);
T24 = FNMS(TH, T1V, T23);
T36 = FNMS(TG, T1V, T2r);
T5b = FNMS(T2b, T1X, T2a);
T1S = FNMS(TG, T1L, T1R);
T1Y = FMA(TH, T1X, T1W);
T3b = FNMS(TH, T1X, T1W);
T3e = FMA(TH, T1V, T23);
T2o = FNMS(TG, T1X, T2n);
T2Y = FNMS(TH, T1L, T2X);
T2U = FMA(TH, T1N, T2T);
T31 = FMA(TG, T1X, T2n);
T2s = FMA(TG, T1V, T2r);
T4x = T29 * T1N;
T4y = FNMS(T2b, T1L, T4x);
{
E T4t, T2e, T2d, T2j;
T4t = T29 * T1L;
T4u = FMA(T2b, T1N, T4t);
T2e = T29 * T1X;
T2f = FNMS(T2b, T1V, T2e);
T2c = FMA(T2b, T1X, T2a);
T2d = T2c * T1L;
T2j = T2c * T1N;
T2g = FMA(T2f, T1N, T2d);
T5g = FMA(T2b, T1V, T2e);
T2k = FNMS(T2f, T1L, T2j);
{
E T47, T5p, T4b, T5l;
T47 = TI * T1V;
T5p = TI * T1N;
T4b = TI * T1X;
T5l = TI * T1L;
T1s = FNMS(TG, TE, T1r);
T48 = FMA(T1s, T1X, T47);
T4c = FNMS(T1s, T1V, T4b);
T5q = FNMS(T1s, T1L, T5p);
T5m = FMA(T1s, T1N, T5l);
T4k = FMA(T1s, T1V, T4b);
T4f = FNMS(T1s, T1X, T47);
}
}
}
{
E T7, T4B, T4V, TJ, T1z, T3j, T3V, T2H, T18, T42, T43, T1n, T2D, T53, T52;
E T2A, T1H, T4R, T4O, T1G, T2O, T3I, T2P, T3P, T2I, T2J, T2K, T1A, T1B, T1C;
E TC, T2w, T3Y, T40, T4I, T4K, TQ, TS, T3y, T3A, T4Y, T50;
{
E T3, T3h, T1y, T3i, T6, T3U, T1v, T3T;
{
E T1, T2, T1w, T1x;
T1 = cr[0];
T2 = ci[WS(rs, 9)];
T3 = T1 + T2;
T3h = T1 - T2;
T1w = ci[WS(rs, 14)];
T1x = cr[WS(rs, 15)];
T1y = T1w - T1x;
T3i = T1w + T1x;
}
{
E T4, T5, T1t, T1u;
T4 = cr[WS(rs, 5)];
T5 = ci[WS(rs, 4)];
T6 = T4 + T5;
T3U = T4 - T5;
T1t = ci[WS(rs, 19)];
T1u = cr[WS(rs, 10)];
T1v = T1t - T1u;
T3T = T1t + T1u;
}
T7 = T3 + T6;
T4B = T3h - T3i;
T4V = T3U + T3T;
TJ = T3 - T6;
T1z = T1v - T1y;
T3j = T3h + T3i;
T3V = T3T - T3U;
T2H = T1v + T1y;
}
{
E Te, T4C, T4M, TK, T1f, T3m, T3L, T2y, TA, T4G, T4Q, TO, T17, T3w, T3H;
E T2C, Tl, T4D, T4N, TL, T1m, T3p, T3O, T2z, Tt, T4F, T4P, TN, T10, T3t;
E T3E, T2B;
{
E Ta, T3k, T1e, T3l, Td, T3K, T1b, T3J;
{
E T8, T9, T1c, T1d;
T8 = cr[WS(rs, 4)];
T9 = ci[WS(rs, 5)];
Ta = T8 + T9;
T3k = T8 - T9;
T1c = ci[WS(rs, 10)];
T1d = cr[WS(rs, 19)];
T1e = T1c - T1d;
T3l = T1c + T1d;
}
{
E Tb, Tc, T19, T1a;
Tb = cr[WS(rs, 9)];
Tc = ci[0];
Td = Tb + Tc;
T3K = Tb - Tc;
T19 = ci[WS(rs, 15)];
T1a = cr[WS(rs, 14)];
T1b = T19 - T1a;
T3J = T19 + T1a;
}
Te = Ta + Td;
T4C = T3k - T3l;
T4M = T3K + T3J;
TK = Ta - Td;
T1f = T1b - T1e;
T3m = T3k + T3l;
T3L = T3J - T3K;
T2y = T1b + T1e;
}
{
E Tw, T3u, Tz, T3F, T13, T3G, T16, T3v;
{
E Tu, Tv, Tx, Ty;
Tu = ci[WS(rs, 7)];
Tv = cr[WS(rs, 2)];
Tw = Tu + Tv;
T3u = Tu - Tv;
Tx = ci[WS(rs, 2)];
Ty = cr[WS(rs, 7)];
Tz = Tx + Ty;
T3F = Tx - Ty;
}
{
E T11, T12, T14, T15;
T11 = ci[WS(rs, 17)];
T12 = cr[WS(rs, 12)];
T13 = T11 - T12;
T3G = T11 + T12;
T14 = ci[WS(rs, 12)];
T15 = cr[WS(rs, 17)];
T16 = T14 - T15;
T3v = T14 + T15;
}
TA = Tw + Tz;
T4G = T3u + T3v;
T4Q = T3F - T3G;
TO = Tw - Tz;
T17 = T13 - T16;
T3w = T3u - T3v;
T3H = T3F + T3G;
T2C = T13 + T16;
}
{
E Th, T3n, T1l, T3o, Tk, T3M, T1i, T3N;
{
E Tf, Tg, T1j, T1k;
Tf = ci[WS(rs, 3)];
Tg = cr[WS(rs, 6)];
Th = Tf + Tg;
T3n = Tf - Tg;
T1j = ci[WS(rs, 18)];
T1k = cr[WS(rs, 11)];
T1l = T1j - T1k;
T3o = T1j + T1k;
}
{
E Ti, Tj, T1g, T1h;
Ti = cr[WS(rs, 1)];
Tj = ci[WS(rs, 8)];
Tk = Ti + Tj;
T3M = Ti - Tj;
T1g = ci[WS(rs, 13)];
T1h = cr[WS(rs, 16)];
T1i = T1g - T1h;
T3N = T1g + T1h;
}
Tl = Th + Tk;
T4D = T3n - T3o;
T4N = T3M - T3N;
TL = Th - Tk;
T1m = T1i - T1l;
T3p = T3n + T3o;
T3O = T3M + T3N;
T2z = T1i + T1l;
}
{
E Tp, T3r, TZ, T3s, Ts, T3D, TW, T3C;
{
E Tn, To, TX, TY;
Tn = cr[WS(rs, 8)];
To = ci[WS(rs, 1)];
Tp = Tn + To;
T3r = Tn - To;
TX = ci[WS(rs, 16)];
TY = cr[WS(rs, 13)];
TZ = TX - TY;
T3s = TX + TY;
}
{
E Tq, Tr, TU, TV;
Tq = ci[WS(rs, 6)];
Tr = cr[WS(rs, 3)];
Ts = Tq + Tr;
T3D = Tq - Tr;
TU = ci[WS(rs, 11)];
TV = cr[WS(rs, 18)];
TW = TU - TV;
T3C = TU + TV;
}
Tt = Tp + Ts;
T4F = T3r + T3s;
T4P = T3D + T3C;
TN = Tp - Ts;
T10 = TW - TZ;
T3t = T3r - T3s;
T3E = T3C - T3D;
T2B = TW + TZ;
}
T18 = T10 - T17;
T42 = T3t - T3w;
T43 = T3m - T3p;
T1n = T1f - T1m;
T2D = T2B - T2C;
T53 = T4F - T4G;
T52 = T4C - T4D;
T2A = T2y - T2z;
T1H = TK - TL;
T4R = T4P - T4Q;
T4O = T4M - T4N;
T1G = TN - TO;
T2O = Te - Tl;
T3I = T3E + T3H;
T2P = Tt - TA;
T3P = T3L + T3O;
T2I = T2y + T2z;
T2J = T2B + T2C;
T2K = T2I + T2J;
T1A = T1f + T1m;
T1B = T10 + T17;
T1C = T1A + T1B;
{
E Tm, TB, TM, TP;
Tm = Te + Tl;
TB = Tt + TA;
TC = Tm + TB;
T2w = Tm - TB;
{
E T3W, T3X, T4E, T4H;
T3W = T3L - T3O;
T3X = T3E - T3H;
T3Y = T3W + T3X;
T40 = T3W - T3X;
T4E = T4C + T4D;
T4H = T4F + T4G;
T4I = T4E + T4H;
T4K = T4E - T4H;
}
TM = TK + TL;
TP = TN + TO;
TQ = TM + TP;
TS = TM - TP;
{
E T3q, T3x, T4W, T4X;
T3q = T3m + T3p;
T3x = T3t + T3w;
T3y = T3q + T3x;
T3A = T3q - T3x;
T4W = T4M + T4N;
T4X = T4P + T4Q;
T4Y = T4W + T4X;
T50 = T4W - T4X;
}
}
}
cr[0] = T7 + TC;
ci[0] = T2H + T2K;
{
E T2t, T2q, T2u, T2p;
T2t = T1z + T1C;
T2p = TJ + TQ;
T2q = T2o * T2p;
T2u = T2s * T2p;
cr[WS(rs, 10)] = FNMS(T2s, T2t, T2q);
ci[WS(rs, 10)] = FMA(T2o, T2t, T2u);
}
{
E T5t, T5u, T5v, T5w;
T5t = T4B + T4I;
T5u = T2c * T5t;
T5v = T4V + T4Y;
T5w = T2c * T5v;
cr[WS(rs, 5)] = FNMS(T2f, T5v, T5u);
ci[WS(rs, 5)] = FMA(T2f, T5t, T5w);
}
{
E T4v, T4w, T4z, T4A;
T4v = T3j + T3y;
T4w = T4u * T4v;
T4z = T3V + T3Y;
T4A = T4u * T4z;
cr[WS(rs, 15)] = FNMS(T4y, T4z, T4w);
ci[WS(rs, 15)] = FMA(T4y, T4v, T4A);
}
{
E T3R, T4p, T49, T4i, T45, T4r, T4d, T4n;
{
E T3Q, T4h, T3B, T4g, T3z;
T3Q = FNMS(KP618033988, T3P, T3I);
T4h = FMA(KP618033988, T3I, T3P);
T3z = FNMS(KP250000000, T3y, T3j);
T3B = FNMS(KP559016994, T3A, T3z);
T4g = FMA(KP559016994, T3A, T3z);
T3R = FNMS(KP951056516, T3Q, T3B);
T4p = FMA(KP951056516, T4h, T4g);
T49 = FMA(KP951056516, T3Q, T3B);
T4i = FNMS(KP951056516, T4h, T4g);
}
{
E T44, T4m, T41, T4l, T3Z;
T44 = FNMS(KP618033988, T43, T42);
T4m = FMA(KP618033988, T42, T43);
T3Z = FNMS(KP250000000, T3Y, T3V);
T41 = FNMS(KP559016994, T40, T3Z);
T4l = FMA(KP559016994, T40, T3Z);
T45 = FMA(KP951056516, T44, T41);
T4r = FNMS(KP951056516, T4m, T4l);
T4d = FNMS(KP951056516, T44, T41);
T4n = FMA(KP951056516, T4m, T4l);
}
{
E T3S, T46, T4a, T4e;
T3S = TE * T3R;
cr[WS(rs, 3)] = FNMS(TH, T45, T3S);
T46 = TE * T45;
ci[WS(rs, 3)] = FMA(TH, T3R, T46);
T4a = T48 * T49;
cr[WS(rs, 7)] = FNMS(T4c, T4d, T4a);
T4e = T48 * T4d;
ci[WS(rs, 7)] = FMA(T4c, T49, T4e);
}
{
E T4j, T4o, T4q, T4s;
T4j = T4f * T4i;
cr[WS(rs, 11)] = FNMS(T4k, T4n, T4j);
T4o = T4f * T4n;
ci[WS(rs, 11)] = FMA(T4k, T4i, T4o);
T4q = T1L * T4p;
cr[WS(rs, 19)] = FNMS(T1N, T4r, T4q);
T4s = T1L * T4r;
ci[WS(rs, 19)] = FMA(T1N, T4p, T4s);
}
}
{
E T4T, T5n, T57, T5e, T55, T5r, T59, T5j;
{
E T4S, T5d, T4L, T5c, T4J;
T4S = FMA(KP618033988, T4R, T4O);
T5d = FNMS(KP618033988, T4O, T4R);
T4J = FNMS(KP250000000, T4I, T4B);
T4L = FMA(KP559016994, T4K, T4J);
T5c = FNMS(KP559016994, T4K, T4J);
T4T = FNMS(KP951056516, T4S, T4L);
T5n = FMA(KP951056516, T5d, T5c);
T57 = FMA(KP951056516, T4S, T4L);
T5e = FNMS(KP951056516, T5d, T5c);
}
{
E T54, T5i, T51, T5h, T4Z;
T54 = FMA(KP618033988, T53, T52);
T5i = FNMS(KP618033988, T52, T53);
T4Z = FNMS(KP250000000, T4Y, T4V);
T51 = FMA(KP559016994, T50, T4Z);
T5h = FNMS(KP559016994, T50, T4Z);
T55 = FMA(KP951056516, T54, T51);
T5r = FNMS(KP951056516, T5i, T5h);
T59 = FNMS(KP951056516, T54, T51);
T5j = FMA(KP951056516, T5i, T5h);
}
{
E T4U, T56, T58, T5a;
T4U = TD * T4T;
cr[WS(rs, 1)] = FNMS(TG, T55, T4U);
T56 = TD * T55;
ci[WS(rs, 1)] = FMA(TG, T4T, T56);
T58 = T1V * T57;
cr[WS(rs, 9)] = FNMS(T1X, T59, T58);
T5a = T1V * T59;
ci[WS(rs, 9)] = FMA(T1X, T57, T5a);
}
{
E T5f, T5k, T5o, T5s;
T5f = T5b * T5e;
cr[WS(rs, 13)] = FNMS(T5g, T5j, T5f);
T5k = T5b * T5j;
ci[WS(rs, 13)] = FMA(T5g, T5e, T5k);
T5o = T5m * T5n;
cr[WS(rs, 17)] = FNMS(T5q, T5r, T5o);
T5s = T5m * T5r;
ci[WS(rs, 17)] = FMA(T5q, T5n, T5s);
}
}
{
E T2Q, T38, T2N, T37, T2F, T3c, T2V, T34, T2L, T2M;
T2Q = FMA(KP618033988, T2P, T2O);
T38 = FNMS(KP618033988, T2O, T2P);
T2L = FNMS(KP250000000, T2K, T2H);
T2M = T2I - T2J;
T2N = FMA(KP559016994, T2M, T2L);
T37 = FNMS(KP559016994, T2M, T2L);
{
E T2E, T33, T2x, T32, T2v;
T2E = FMA(KP618033988, T2D, T2A);
T33 = FNMS(KP618033988, T2A, T2D);
T2v = FNMS(KP250000000, TC, T7);
T2x = FMA(KP559016994, T2w, T2v);
T32 = FNMS(KP559016994, T2w, T2v);
T2F = FMA(KP951056516, T2E, T2x);
T3c = FMA(KP951056516, T33, T32);
T2V = FNMS(KP951056516, T2E, T2x);
T34 = FNMS(KP951056516, T33, T32);
}
{
E T2G, T2S, T2R, T3d, T3g, T3f;
T2G = T29 * T2F;
T2S = T2b * T2F;
T2R = FNMS(KP951056516, T2Q, T2N);
cr[WS(rs, 4)] = FNMS(T2b, T2R, T2G);
ci[WS(rs, 4)] = FMA(T29, T2R, T2S);
T3d = T3b * T3c;
T3g = T3e * T3c;
T3f = FNMS(KP951056516, T38, T37);
cr[WS(rs, 12)] = FNMS(T3e, T3f, T3d);
ci[WS(rs, 12)] = FMA(T3b, T3f, T3g);
}
{
E T2W, T30, T2Z, T35, T3a, T39;
T2W = T2U * T2V;
T30 = T2Y * T2V;
T2Z = FMA(KP951056516, T2Q, T2N);
cr[WS(rs, 16)] = FNMS(T2Y, T2Z, T2W);
ci[WS(rs, 16)] = FMA(T2U, T2Z, T30);
T35 = T31 * T34;
T3a = T36 * T34;
T39 = FMA(KP951056516, T38, T37);
cr[WS(rs, 8)] = FNMS(T36, T39, T35);
ci[WS(rs, 8)] = FMA(T31, T39, T3a);
}
}
{
E T1I, T26, T1F, T25, T1p, T2h, T1P, T21, T1D, T1E;
T1I = FNMS(KP618033988, T1H, T1G);
T26 = FMA(KP618033988, T1G, T1H);
T1D = FNMS(KP250000000, T1C, T1z);
T1E = T1A - T1B;
T1F = FNMS(KP559016994, T1E, T1D);
T25 = FMA(KP559016994, T1E, T1D);
{
E T1o, T20, TT, T1Z, TR;
T1o = FNMS(KP618033988, T1n, T18);
T20 = FMA(KP618033988, T18, T1n);
TR = FNMS(KP250000000, TQ, TJ);
TT = FNMS(KP559016994, TS, TR);
T1Z = FMA(KP559016994, TS, TR);
T1p = FMA(KP951056516, T1o, TT);
T2h = FMA(KP951056516, T20, T1Z);
T1P = FNMS(KP951056516, T1o, TT);
T21 = FNMS(KP951056516, T20, T1Z);
}
{
E T1q, T1K, T1J, T2i, T2m, T2l;
T1q = TI * T1p;
T1K = T1s * T1p;
T1J = FNMS(KP951056516, T1I, T1F);
cr[WS(rs, 2)] = FNMS(T1s, T1J, T1q);
ci[WS(rs, 2)] = FMA(TI, T1J, T1K);
T2i = T2g * T2h;
T2m = T2k * T2h;
T2l = FNMS(KP951056516, T26, T25);
cr[WS(rs, 14)] = FNMS(T2k, T2l, T2i);
ci[WS(rs, 14)] = FMA(T2g, T2l, T2m);
}
{
E T1Q, T1U, T1T, T22, T28, T27;
T1Q = T1O * T1P;
T1U = T1S * T1P;
T1T = FMA(KP951056516, T1I, T1F);
cr[WS(rs, 18)] = FNMS(T1S, T1T, T1Q);
ci[WS(rs, 18)] = FMA(T1O, T1T, T1U);
T22 = T1Y * T21;
T28 = T24 * T21;
T27 = FMA(KP951056516, T26, T25);
cr[WS(rs, 6)] = FNMS(T24, T27, T22);
ci[WS(rs, 6)] = FMA(T1Y, T27, T28);
}
}
}
}
}
}
static const tw_instr twinstr[] = {
{ TW_CEXP, 1, 1 },
{ TW_CEXP, 1, 3 },
{ TW_CEXP, 1, 9 },
{ TW_CEXP, 1, 19 },
{ TW_NEXT, 1, 0 }
};
static const hc2hc_desc desc = { 20, "hb2_20", twinstr, &GENUS, { 136, 58, 140, 0 } };
void X(codelet_hb2_20) (planner *p) {
X(khc2hc_register) (p, hb2_20, &desc);
}
#else
/* Generated by: ../../../genfft/gen_hc2hc.native -compact -variables 4 -pipeline-latency 4 -sign 1 -twiddle-log3 -precompute-twiddles -n 20 -dif -name hb2_20 -include rdft/scalar/hb.h */
/*
* This function contains 276 FP additions, 164 FP multiplications,
* (or, 204 additions, 92 multiplications, 72 fused multiply/add),
* 137 stack variables, 4 constants, and 80 memory accesses
*/
#include "rdft/scalar/hb.h"
static void hb2_20(R *cr, R *ci, const R *W, stride rs, INT mb, INT me, INT ms)
{
DK(KP250000000, +0.250000000000000000000000000000000000000000000);
DK(KP559016994, +0.559016994374947424102293417182819058860154590);
DK(KP587785252, +0.587785252292473129168705954639072768597652438);
DK(KP951056516, +0.951056516295153572116439333379382143405698634);
{
INT m;
for (m = mb, W = W + ((mb - 1) * 8); m < me; m = m + 1, cr = cr + ms, ci = ci - ms, W = W + 8, MAKE_VOLATILE_STRIDE(40, rs)) {
E TD, TG, TE, TH, TJ, T1t, T27, T25, T1T, T1R, T1V, T2j, T2Z, T21, T2X;
E T2T, T2n, T2P, T3V, T41, T3R, T3X, T29, T2c, T4H, T4L, T1L, T1M, T1N, T2d;
E T4R, T1P, T4P, T49, T2N, T2f, T47, T2L;
{
E T1U, T2l, T1Z, T2i, T1S, T2m, T20, T2h;
{
E TF, T1s, TI, T1r;
TD = W[0];
TG = W[1];
TE = W[2];
TH = W[3];
TF = TD * TE;
T1s = TG * TE;
TI = TG * TH;
T1r = TD * TH;
TJ = TF + TI;
T1t = T1r - T1s;
T27 = T1r + T1s;
T25 = TF - TI;
T1T = W[5];
T1U = TH * T1T;
T2l = TD * T1T;
T1Z = TE * T1T;
T2i = TG * T1T;
T1R = W[4];
T1S = TE * T1R;
T2m = TG * T1R;
T20 = TH * T1R;
T2h = TD * T1R;
}
T1V = T1S + T1U;
T2j = T2h - T2i;
T2Z = T1Z + T20;
T21 = T1Z - T20;
T2X = T1S - T1U;
T2T = T2l - T2m;
T2n = T2l + T2m;
T2P = T2h + T2i;
{
E T3T, T3U, T3P, T3Q;
T3T = TJ * T1T;
T3U = T1t * T1R;
T3V = T3T - T3U;
T41 = T3T + T3U;
T3P = TJ * T1R;
T3Q = T1t * T1T;
T3R = T3P + T3Q;
T3X = T3P - T3Q;
{
E T26, T28, T2a, T2b;
T26 = T25 * T1R;
T28 = T27 * T1T;
T29 = T26 + T28;
T2a = T25 * T1T;
T2b = T27 * T1R;
T2c = T2a - T2b;
T4H = T26 - T28;
T4L = T2a + T2b;
T1L = W[6];
T1M = W[7];
T1N = FMA(TD, T1L, TG * T1M);
T2d = FMA(T29, T1L, T2c * T1M);
T4R = FNMS(T1t, T1L, TJ * T1M);
T1P = FNMS(TG, T1L, TD * T1M);
T4P = FMA(TJ, T1L, T1t * T1M);
T49 = FNMS(T27, T1L, T25 * T1M);
T2N = FNMS(TH, T1L, TE * T1M);
T2f = FNMS(T2c, T1L, T29 * T1M);
T47 = FMA(T25, T1L, T27 * T1M);
T2L = FMA(TE, T1L, TH * T1M);
}
}
}
{
E T7, T4i, T4x, TK, T1D, T3i, T3E, T2D, T19, T3L, T3M, T1o, T2x, T4C, T4B;
E T2u, T1v, T4r, T4o, T1u, T2H, T37, T2I, T3e, T3p, T3w, T3x, Tm, TB, TC;
E T4u, T4v, T4y, T2A, T2B, T2E, T1E, T1F, T1G, T4d, T4g, T4j, T3F, T3G, T3H;
E TN, TQ, TR, T48, T4a;
{
E T3, T3g, T1C, T3h, T6, T3D, T1z, T3C;
{
E T1, T2, T1A, T1B;
T1 = cr[0];
T2 = ci[WS(rs, 9)];
T3 = T1 + T2;
T3g = T1 - T2;
T1A = ci[WS(rs, 14)];
T1B = cr[WS(rs, 15)];
T1C = T1A - T1B;
T3h = T1A + T1B;
}
{
E T4, T5, T1x, T1y;
T4 = cr[WS(rs, 5)];
T5 = ci[WS(rs, 4)];
T6 = T4 + T5;
T3D = T4 - T5;
T1x = ci[WS(rs, 19)];
T1y = cr[WS(rs, 10)];
T1z = T1x - T1y;
T3C = T1x + T1y;
}
T7 = T3 + T6;
T4i = T3g - T3h;
T4x = T3D + T3C;
TK = T3 - T6;
T1D = T1z - T1C;
T3i = T3g + T3h;
T3E = T3C - T3D;
T2D = T1z + T1C;
}
{
E Te, T4b, T4m, TL, T11, T33, T3l, T2s, TA, T4f, T4q, TP, T1n, T3d, T3v;
E T2w, Tl, T4c, T4n, TM, T18, T36, T3o, T2t, Tt, T4e, T4p, TO, T1g, T3a;
E T3s, T2v;
{
E Ta, T3j, T10, T3k, Td, T32, TX, T31;
{
E T8, T9, TY, TZ;
T8 = cr[WS(rs, 4)];
T9 = ci[WS(rs, 5)];
Ta = T8 + T9;
T3j = T8 - T9;
TY = ci[WS(rs, 10)];
TZ = cr[WS(rs, 19)];
T10 = TY - TZ;
T3k = TY + TZ;
}
{
E Tb, Tc, TV, TW;
Tb = cr[WS(rs, 9)];
Tc = ci[0];
Td = Tb + Tc;
T32 = Tb - Tc;
TV = ci[WS(rs, 15)];
TW = cr[WS(rs, 14)];
TX = TV - TW;
T31 = TV + TW;
}
Te = Ta + Td;
T4b = T3j - T3k;
T4m = T32 + T31;
TL = Ta - Td;
T11 = TX - T10;
T33 = T31 - T32;
T3l = T3j + T3k;
T2s = TX + T10;
}
{
E Tw, T3t, Tz, T3b, T1j, T3c, T1m, T3u;
{
E Tu, Tv, Tx, Ty;
Tu = ci[WS(rs, 7)];
Tv = cr[WS(rs, 2)];
Tw = Tu + Tv;
T3t = Tu - Tv;
Tx = ci[WS(rs, 2)];
Ty = cr[WS(rs, 7)];
Tz = Tx + Ty;
T3b = Tx - Ty;
}
{
E T1h, T1i, T1k, T1l;
T1h = ci[WS(rs, 17)];
T1i = cr[WS(rs, 12)];
T1j = T1h - T1i;
T3c = T1h + T1i;
T1k = ci[WS(rs, 12)];
T1l = cr[WS(rs, 17)];
T1m = T1k - T1l;
T3u = T1k + T1l;
}
TA = Tw + Tz;
T4f = T3t + T3u;
T4q = T3b - T3c;
TP = Tw - Tz;
T1n = T1j - T1m;
T3d = T3b + T3c;
T3v = T3t - T3u;
T2w = T1j + T1m;
}
{
E Th, T3m, T17, T3n, Tk, T34, T14, T35;
{
E Tf, Tg, T15, T16;
Tf = ci[WS(rs, 3)];
Tg = cr[WS(rs, 6)];
Th = Tf + Tg;
T3m = Tf - Tg;
T15 = ci[WS(rs, 18)];
T16 = cr[WS(rs, 11)];
T17 = T15 - T16;
T3n = T15 + T16;
}
{
E Ti, Tj, T12, T13;
Ti = cr[WS(rs, 1)];
Tj = ci[WS(rs, 8)];
Tk = Ti + Tj;
T34 = Ti - Tj;
T12 = ci[WS(rs, 13)];
T13 = cr[WS(rs, 16)];
T14 = T12 - T13;
T35 = T12 + T13;
}
Tl = Th + Tk;
T4c = T3m - T3n;
T4n = T34 - T35;
TM = Th - Tk;
T18 = T14 - T17;
T36 = T34 + T35;
T3o = T3m + T3n;
T2t = T14 + T17;
}
{
E Tp, T3q, T1f, T3r, Ts, T39, T1c, T38;
{
E Tn, To, T1d, T1e;
Tn = cr[WS(rs, 8)];
To = ci[WS(rs, 1)];
Tp = Tn + To;
T3q = Tn - To;
T1d = ci[WS(rs, 16)];
T1e = cr[WS(rs, 13)];
T1f = T1d - T1e;
T3r = T1d + T1e;
}
{
E Tq, Tr, T1a, T1b;
Tq = ci[WS(rs, 6)];
Tr = cr[WS(rs, 3)];
Ts = Tq + Tr;
T39 = Tq - Tr;
T1a = ci[WS(rs, 11)];
T1b = cr[WS(rs, 18)];
T1c = T1a - T1b;
T38 = T1a + T1b;
}
Tt = Tp + Ts;
T4e = T3q + T3r;
T4p = T39 + T38;
TO = Tp - Ts;
T1g = T1c - T1f;
T3a = T38 - T39;
T3s = T3q - T3r;
T2v = T1c + T1f;
}
T19 = T11 - T18;
T3L = T3l - T3o;
T3M = T3s - T3v;
T1o = T1g - T1n;
T2x = T2v - T2w;
T4C = T4e - T4f;
T4B = T4b - T4c;
T2u = T2s - T2t;
T1v = TO - TP;
T4r = T4p - T4q;
T4o = T4m - T4n;
T1u = TL - TM;
T2H = Te - Tl;
T37 = T33 + T36;
T2I = Tt - TA;
T3e = T3a + T3d;
T3p = T3l + T3o;
T3w = T3s + T3v;
T3x = T3p + T3w;
Tm = Te + Tl;
TB = Tt + TA;
TC = Tm + TB;
T4u = T4m + T4n;
T4v = T4p + T4q;
T4y = T4u + T4v;
T2A = T2s + T2t;
T2B = T2v + T2w;
T2E = T2A + T2B;
T1E = T11 + T18;
T1F = T1g + T1n;
T1G = T1E + T1F;
T4d = T4b + T4c;
T4g = T4e + T4f;
T4j = T4d + T4g;
T3F = T33 - T36;
T3G = T3a - T3d;
T3H = T3F + T3G;
TN = TL + TM;
TQ = TO + TP;
TR = TN + TQ;
}
cr[0] = T7 + TC;
ci[0] = T2D + T2E;
{
E T2k, T2o, T4T, T4U;
T2k = TK + TR;
T2o = T1D + T1G;
cr[WS(rs, 10)] = FNMS(T2n, T2o, T2j * T2k);
ci[WS(rs, 10)] = FMA(T2n, T2k, T2j * T2o);
T4T = T4i + T4j;
T4U = T4x + T4y;
cr[WS(rs, 5)] = FNMS(T2c, T4U, T29 * T4T);
ci[WS(rs, 5)] = FMA(T29, T4U, T2c * T4T);
}
T48 = T3i + T3x;
T4a = T3E + T3H;
cr[WS(rs, 15)] = FNMS(T49, T4a, T47 * T48);
ci[WS(rs, 15)] = FMA(T47, T4a, T49 * T48);
{
E T2y, T2J, T2V, T2R, T2G, T2U, T2r, T2Q;
T2y = FMA(KP951056516, T2u, KP587785252 * T2x);
T2J = FMA(KP951056516, T2H, KP587785252 * T2I);
T2V = FNMS(KP951056516, T2I, KP587785252 * T2H);
T2R = FNMS(KP951056516, T2x, KP587785252 * T2u);
{
E T2C, T2F, T2p, T2q;
T2C = KP559016994 * (T2A - T2B);
T2F = FNMS(KP250000000, T2E, T2D);
T2G = T2C + T2F;
T2U = T2F - T2C;
T2p = KP559016994 * (Tm - TB);
T2q = FNMS(KP250000000, TC, T7);
T2r = T2p + T2q;
T2Q = T2q - T2p;
}
{
E T2z, T2K, T2Y, T30;
T2z = T2r + T2y;
T2K = T2G - T2J;
cr[WS(rs, 4)] = FNMS(T27, T2K, T25 * T2z);
ci[WS(rs, 4)] = FMA(T27, T2z, T25 * T2K);
T2Y = T2Q - T2R;
T30 = T2V + T2U;
cr[WS(rs, 12)] = FNMS(T2Z, T30, T2X * T2Y);
ci[WS(rs, 12)] = FMA(T2Z, T2Y, T2X * T30);
}
{
E T2M, T2O, T2S, T2W;
T2M = T2r - T2y;
T2O = T2J + T2G;
cr[WS(rs, 16)] = FNMS(T2N, T2O, T2L * T2M);
ci[WS(rs, 16)] = FMA(T2N, T2M, T2L * T2O);
T2S = T2Q + T2R;
T2W = T2U - T2V;
cr[WS(rs, 8)] = FNMS(T2T, T2W, T2P * T2S);
ci[WS(rs, 8)] = FMA(T2T, T2S, T2P * T2W);
}
}
{
E T4s, T4D, T4N, T4I, T4A, T4M, T4l, T4J;
T4s = FMA(KP951056516, T4o, KP587785252 * T4r);
T4D = FMA(KP951056516, T4B, KP587785252 * T4C);
T4N = FNMS(KP951056516, T4C, KP587785252 * T4B);
T4I = FNMS(KP951056516, T4r, KP587785252 * T4o);
{
E T4w, T4z, T4h, T4k;
T4w = KP559016994 * (T4u - T4v);
T4z = FNMS(KP250000000, T4y, T4x);
T4A = T4w + T4z;
T4M = T4z - T4w;
T4h = KP559016994 * (T4d - T4g);
T4k = FNMS(KP250000000, T4j, T4i);
T4l = T4h + T4k;
T4J = T4k - T4h;
}
{
E T4t, T4E, T4Q, T4S;
T4t = T4l - T4s;
T4E = T4A + T4D;
cr[WS(rs, 1)] = FNMS(TG, T4E, TD * T4t);
ci[WS(rs, 1)] = FMA(TD, T4E, TG * T4t);
T4Q = T4J - T4I;
T4S = T4M + T4N;
cr[WS(rs, 17)] = FNMS(T4R, T4S, T4P * T4Q);
ci[WS(rs, 17)] = FMA(T4P, T4S, T4R * T4Q);
}
{
E T4F, T4G, T4K, T4O;
T4F = T4s + T4l;
T4G = T4A - T4D;
cr[WS(rs, 9)] = FNMS(T1T, T4G, T1R * T4F);
ci[WS(rs, 9)] = FMA(T1R, T4G, T1T * T4F);
T4K = T4I + T4J;
T4O = T4M - T4N;
cr[WS(rs, 13)] = FNMS(T4L, T4O, T4H * T4K);
ci[WS(rs, 13)] = FMA(T4H, T4O, T4L * T4K);
}
}
{
E T1p, T1w, T22, T1X, T1J, T23, TU, T1W;
T1p = FNMS(KP951056516, T1o, KP587785252 * T19);
T1w = FNMS(KP951056516, T1v, KP587785252 * T1u);
T22 = FMA(KP951056516, T1u, KP587785252 * T1v);
T1X = FMA(KP951056516, T19, KP587785252 * T1o);
{
E T1H, T1I, TS, TT;
T1H = FNMS(KP250000000, T1G, T1D);
T1I = KP559016994 * (T1E - T1F);
T1J = T1H - T1I;
T23 = T1I + T1H;
TS = FNMS(KP250000000, TR, TK);
TT = KP559016994 * (TN - TQ);
TU = TS - TT;
T1W = TT + TS;
}
{
E T1q, T1K, T2e, T2g;
T1q = TU - T1p;
T1K = T1w + T1J;
cr[WS(rs, 2)] = FNMS(T1t, T1K, TJ * T1q);
ci[WS(rs, 2)] = FMA(T1t, T1q, TJ * T1K);
T2e = T1W + T1X;
T2g = T23 - T22;
cr[WS(rs, 14)] = FNMS(T2f, T2g, T2d * T2e);
ci[WS(rs, 14)] = FMA(T2f, T2e, T2d * T2g);
}
{
E T1O, T1Q, T1Y, T24;
T1O = TU + T1p;
T1Q = T1J - T1w;
cr[WS(rs, 18)] = FNMS(T1P, T1Q, T1N * T1O);
ci[WS(rs, 18)] = FMA(T1P, T1O, T1N * T1Q);
T1Y = T1W - T1X;
T24 = T22 + T23;
cr[WS(rs, 6)] = FNMS(T21, T24, T1V * T1Y);
ci[WS(rs, 6)] = FMA(T21, T1Y, T1V * T24);
}
}
{
E T3f, T3N, T43, T3Z, T3K, T42, T3A, T3Y;
T3f = FNMS(KP951056516, T3e, KP587785252 * T37);
T3N = FNMS(KP951056516, T3M, KP587785252 * T3L);
T43 = FMA(KP951056516, T3L, KP587785252 * T3M);
T3Z = FMA(KP951056516, T37, KP587785252 * T3e);
{
E T3I, T3J, T3y, T3z;
T3I = FNMS(KP250000000, T3H, T3E);
T3J = KP559016994 * (T3F - T3G);
T3K = T3I - T3J;
T42 = T3J + T3I;
T3y = FNMS(KP250000000, T3x, T3i);
T3z = KP559016994 * (T3p - T3w);
T3A = T3y - T3z;
T3Y = T3z + T3y;
}
{
E T3B, T3O, T45, T46;
T3B = T3f + T3A;
T3O = T3K - T3N;
cr[WS(rs, 3)] = FNMS(TH, T3O, TE * T3B);
ci[WS(rs, 3)] = FMA(TE, T3O, TH * T3B);
T45 = T3Z + T3Y;
T46 = T42 - T43;
cr[WS(rs, 19)] = FNMS(T1M, T46, T1L * T45);
ci[WS(rs, 19)] = FMA(T1L, T46, T1M * T45);
}
{
E T3S, T3W, T40, T44;
T3S = T3A - T3f;
T3W = T3K + T3N;
cr[WS(rs, 7)] = FNMS(T3V, T3W, T3R * T3S);
ci[WS(rs, 7)] = FMA(T3R, T3W, T3V * T3S);
T40 = T3Y - T3Z;
T44 = T42 + T43;
cr[WS(rs, 11)] = FNMS(T41, T44, T3X * T40);
ci[WS(rs, 11)] = FMA(T3X, T44, T41 * T40);
}
}
}
}
}
}
static const tw_instr twinstr[] = {
{ TW_CEXP, 1, 1 },
{ TW_CEXP, 1, 3 },
{ TW_CEXP, 1, 9 },
{ TW_CEXP, 1, 19 },
{ TW_NEXT, 1, 0 }
};
static const hc2hc_desc desc = { 20, "hb2_20", twinstr, &GENUS, { 204, 92, 72, 0 } };
void X(codelet_hb2_20) (planner *p) {
X(khc2hc_register) (p, hb2_20, &desc);
}
#endif