mirror of
https://github.com/tildearrow/furnace.git
synced 2024-11-06 21:05:04 +00:00
54e93db207
not reliable yet
278 lines
9.3 KiB
C
278 lines
9.3 KiB
C
/*
|
|
* Copyright (c) 2003, 2007-14 Matteo Frigo
|
|
* Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
|
*
|
|
*/
|
|
|
|
/* This file was automatically generated --- DO NOT EDIT */
|
|
/* Generated on Tue Sep 14 10:45:44 EDT 2021 */
|
|
|
|
#include "dft/codelet-dft.h"
|
|
|
|
#if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
|
|
|
|
/* Generated by: ../../../genfft/gen_twiddle_c.native -fma -simd -compact -variables 4 -pipeline-latency 8 -n 10 -name t2fv_10 -include dft/simd/t2f.h */
|
|
|
|
/*
|
|
* This function contains 51 FP additions, 40 FP multiplications,
|
|
* (or, 33 additions, 22 multiplications, 18 fused multiply/add),
|
|
* 32 stack variables, 4 constants, and 20 memory accesses
|
|
*/
|
|
#include "dft/simd/t2f.h"
|
|
|
|
static void t2fv_10(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
|
|
{
|
|
DVK(KP559016994, +0.559016994374947424102293417182819058860154590);
|
|
DVK(KP618033988, +0.618033988749894848204586834365638117720309180);
|
|
DVK(KP951056516, +0.951056516295153572116439333379382143405698634);
|
|
DVK(KP250000000, +0.250000000000000000000000000000000000000000000);
|
|
{
|
|
INT m;
|
|
R *x;
|
|
x = ri;
|
|
for (m = mb, W = W + (mb * ((TWVL / VL) * 18)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 18), MAKE_VOLATILE_STRIDE(10, rs)) {
|
|
V T4, TA, Tk, Tp, Tq, TE, TF, TG, T9, Te, Tf, TB, TC, TD, T1;
|
|
V T3, T2;
|
|
T1 = LD(&(x[0]), ms, &(x[0]));
|
|
T2 = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)]));
|
|
T3 = BYTWJ(&(W[TWVL * 8]), T2);
|
|
T4 = VSUB(T1, T3);
|
|
TA = VADD(T1, T3);
|
|
{
|
|
V Th, To, Tj, Tm;
|
|
{
|
|
V Tg, Tn, Ti, Tl;
|
|
Tg = LD(&(x[WS(rs, 4)]), ms, &(x[0]));
|
|
Th = BYTWJ(&(W[TWVL * 6]), Tg);
|
|
Tn = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)]));
|
|
To = BYTWJ(&(W[0]), Tn);
|
|
Ti = LD(&(x[WS(rs, 9)]), ms, &(x[WS(rs, 1)]));
|
|
Tj = BYTWJ(&(W[TWVL * 16]), Ti);
|
|
Tl = LD(&(x[WS(rs, 6)]), ms, &(x[0]));
|
|
Tm = BYTWJ(&(W[TWVL * 10]), Tl);
|
|
}
|
|
Tk = VSUB(Th, Tj);
|
|
Tp = VSUB(Tm, To);
|
|
Tq = VADD(Tk, Tp);
|
|
TE = VADD(Th, Tj);
|
|
TF = VADD(Tm, To);
|
|
TG = VADD(TE, TF);
|
|
}
|
|
{
|
|
V T6, Td, T8, Tb;
|
|
{
|
|
V T5, Tc, T7, Ta;
|
|
T5 = LD(&(x[WS(rs, 2)]), ms, &(x[0]));
|
|
T6 = BYTWJ(&(W[TWVL * 2]), T5);
|
|
Tc = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)]));
|
|
Td = BYTWJ(&(W[TWVL * 4]), Tc);
|
|
T7 = LD(&(x[WS(rs, 7)]), ms, &(x[WS(rs, 1)]));
|
|
T8 = BYTWJ(&(W[TWVL * 12]), T7);
|
|
Ta = LD(&(x[WS(rs, 8)]), ms, &(x[0]));
|
|
Tb = BYTWJ(&(W[TWVL * 14]), Ta);
|
|
}
|
|
T9 = VSUB(T6, T8);
|
|
Te = VSUB(Tb, Td);
|
|
Tf = VADD(T9, Te);
|
|
TB = VADD(T6, T8);
|
|
TC = VADD(Tb, Td);
|
|
TD = VADD(TB, TC);
|
|
}
|
|
{
|
|
V Tt, Tr, Ts, Tx, Tz, Tv, Tw, Ty, Tu;
|
|
Tt = VSUB(Tf, Tq);
|
|
Tr = VADD(Tf, Tq);
|
|
Ts = VFNMS(LDK(KP250000000), Tr, T4);
|
|
Tv = VSUB(T9, Te);
|
|
Tw = VSUB(Tk, Tp);
|
|
Tx = VMUL(LDK(KP951056516), VFMA(LDK(KP618033988), Tw, Tv));
|
|
Tz = VMUL(LDK(KP951056516), VFNMS(LDK(KP618033988), Tv, Tw));
|
|
ST(&(x[WS(rs, 5)]), VADD(T4, Tr), ms, &(x[WS(rs, 1)]));
|
|
Ty = VFNMS(LDK(KP559016994), Tt, Ts);
|
|
ST(&(x[WS(rs, 3)]), VFNMSI(Tz, Ty), ms, &(x[WS(rs, 1)]));
|
|
ST(&(x[WS(rs, 7)]), VFMAI(Tz, Ty), ms, &(x[WS(rs, 1)]));
|
|
Tu = VFMA(LDK(KP559016994), Tt, Ts);
|
|
ST(&(x[WS(rs, 1)]), VFNMSI(Tx, Tu), ms, &(x[WS(rs, 1)]));
|
|
ST(&(x[WS(rs, 9)]), VFMAI(Tx, Tu), ms, &(x[WS(rs, 1)]));
|
|
}
|
|
{
|
|
V TJ, TH, TI, TN, TP, TL, TM, TO, TK;
|
|
TJ = VSUB(TD, TG);
|
|
TH = VADD(TD, TG);
|
|
TI = VFNMS(LDK(KP250000000), TH, TA);
|
|
TL = VSUB(TE, TF);
|
|
TM = VSUB(TB, TC);
|
|
TN = VMUL(LDK(KP951056516), VFNMS(LDK(KP618033988), TM, TL));
|
|
TP = VMUL(LDK(KP951056516), VFMA(LDK(KP618033988), TL, TM));
|
|
ST(&(x[0]), VADD(TA, TH), ms, &(x[0]));
|
|
TO = VFMA(LDK(KP559016994), TJ, TI);
|
|
ST(&(x[WS(rs, 4)]), VFMAI(TP, TO), ms, &(x[0]));
|
|
ST(&(x[WS(rs, 6)]), VFNMSI(TP, TO), ms, &(x[0]));
|
|
TK = VFNMS(LDK(KP559016994), TJ, TI);
|
|
ST(&(x[WS(rs, 2)]), VFMAI(TN, TK), ms, &(x[0]));
|
|
ST(&(x[WS(rs, 8)]), VFNMSI(TN, TK), ms, &(x[0]));
|
|
}
|
|
}
|
|
}
|
|
VLEAVE();
|
|
}
|
|
|
|
static const tw_instr twinstr[] = {
|
|
VTW(0, 1),
|
|
VTW(0, 2),
|
|
VTW(0, 3),
|
|
VTW(0, 4),
|
|
VTW(0, 5),
|
|
VTW(0, 6),
|
|
VTW(0, 7),
|
|
VTW(0, 8),
|
|
VTW(0, 9),
|
|
{ TW_NEXT, VL, 0 }
|
|
};
|
|
|
|
static const ct_desc desc = { 10, XSIMD_STRING("t2fv_10"), twinstr, &GENUS, { 33, 22, 18, 0 }, 0, 0, 0 };
|
|
|
|
void XSIMD(codelet_t2fv_10) (planner *p) {
|
|
X(kdft_dit_register) (p, t2fv_10, &desc);
|
|
}
|
|
#else
|
|
|
|
/* Generated by: ../../../genfft/gen_twiddle_c.native -simd -compact -variables 4 -pipeline-latency 8 -n 10 -name t2fv_10 -include dft/simd/t2f.h */
|
|
|
|
/*
|
|
* This function contains 51 FP additions, 30 FP multiplications,
|
|
* (or, 45 additions, 24 multiplications, 6 fused multiply/add),
|
|
* 32 stack variables, 4 constants, and 20 memory accesses
|
|
*/
|
|
#include "dft/simd/t2f.h"
|
|
|
|
static void t2fv_10(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
|
|
{
|
|
DVK(KP587785252, +0.587785252292473129168705954639072768597652438);
|
|
DVK(KP951056516, +0.951056516295153572116439333379382143405698634);
|
|
DVK(KP250000000, +0.250000000000000000000000000000000000000000000);
|
|
DVK(KP559016994, +0.559016994374947424102293417182819058860154590);
|
|
{
|
|
INT m;
|
|
R *x;
|
|
x = ri;
|
|
for (m = mb, W = W + (mb * ((TWVL / VL) * 18)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 18), MAKE_VOLATILE_STRIDE(10, rs)) {
|
|
V Tr, TH, Tg, Tl, Tm, TA, TB, TJ, T5, Ta, Tb, TD, TE, TI, To;
|
|
V Tq, Tp;
|
|
To = LD(&(x[0]), ms, &(x[0]));
|
|
Tp = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)]));
|
|
Tq = BYTWJ(&(W[TWVL * 8]), Tp);
|
|
Tr = VSUB(To, Tq);
|
|
TH = VADD(To, Tq);
|
|
{
|
|
V Td, Tk, Tf, Ti;
|
|
{
|
|
V Tc, Tj, Te, Th;
|
|
Tc = LD(&(x[WS(rs, 4)]), ms, &(x[0]));
|
|
Td = BYTWJ(&(W[TWVL * 6]), Tc);
|
|
Tj = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)]));
|
|
Tk = BYTWJ(&(W[0]), Tj);
|
|
Te = LD(&(x[WS(rs, 9)]), ms, &(x[WS(rs, 1)]));
|
|
Tf = BYTWJ(&(W[TWVL * 16]), Te);
|
|
Th = LD(&(x[WS(rs, 6)]), ms, &(x[0]));
|
|
Ti = BYTWJ(&(W[TWVL * 10]), Th);
|
|
}
|
|
Tg = VSUB(Td, Tf);
|
|
Tl = VSUB(Ti, Tk);
|
|
Tm = VADD(Tg, Tl);
|
|
TA = VADD(Td, Tf);
|
|
TB = VADD(Ti, Tk);
|
|
TJ = VADD(TA, TB);
|
|
}
|
|
{
|
|
V T2, T9, T4, T7;
|
|
{
|
|
V T1, T8, T3, T6;
|
|
T1 = LD(&(x[WS(rs, 2)]), ms, &(x[0]));
|
|
T2 = BYTWJ(&(W[TWVL * 2]), T1);
|
|
T8 = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)]));
|
|
T9 = BYTWJ(&(W[TWVL * 4]), T8);
|
|
T3 = LD(&(x[WS(rs, 7)]), ms, &(x[WS(rs, 1)]));
|
|
T4 = BYTWJ(&(W[TWVL * 12]), T3);
|
|
T6 = LD(&(x[WS(rs, 8)]), ms, &(x[0]));
|
|
T7 = BYTWJ(&(W[TWVL * 14]), T6);
|
|
}
|
|
T5 = VSUB(T2, T4);
|
|
Ta = VSUB(T7, T9);
|
|
Tb = VADD(T5, Ta);
|
|
TD = VADD(T2, T4);
|
|
TE = VADD(T7, T9);
|
|
TI = VADD(TD, TE);
|
|
}
|
|
{
|
|
V Tn, Ts, Tt, Tx, Tz, Tv, Tw, Ty, Tu;
|
|
Tn = VMUL(LDK(KP559016994), VSUB(Tb, Tm));
|
|
Ts = VADD(Tb, Tm);
|
|
Tt = VFNMS(LDK(KP250000000), Ts, Tr);
|
|
Tv = VSUB(T5, Ta);
|
|
Tw = VSUB(Tg, Tl);
|
|
Tx = VBYI(VFMA(LDK(KP951056516), Tv, VMUL(LDK(KP587785252), Tw)));
|
|
Tz = VBYI(VFNMS(LDK(KP587785252), Tv, VMUL(LDK(KP951056516), Tw)));
|
|
ST(&(x[WS(rs, 5)]), VADD(Tr, Ts), ms, &(x[WS(rs, 1)]));
|
|
Ty = VSUB(Tt, Tn);
|
|
ST(&(x[WS(rs, 3)]), VSUB(Ty, Tz), ms, &(x[WS(rs, 1)]));
|
|
ST(&(x[WS(rs, 7)]), VADD(Tz, Ty), ms, &(x[WS(rs, 1)]));
|
|
Tu = VADD(Tn, Tt);
|
|
ST(&(x[WS(rs, 1)]), VSUB(Tu, Tx), ms, &(x[WS(rs, 1)]));
|
|
ST(&(x[WS(rs, 9)]), VADD(Tx, Tu), ms, &(x[WS(rs, 1)]));
|
|
}
|
|
{
|
|
V TM, TK, TL, TG, TO, TC, TF, TP, TN;
|
|
TM = VMUL(LDK(KP559016994), VSUB(TI, TJ));
|
|
TK = VADD(TI, TJ);
|
|
TL = VFNMS(LDK(KP250000000), TK, TH);
|
|
TC = VSUB(TA, TB);
|
|
TF = VSUB(TD, TE);
|
|
TG = VBYI(VFNMS(LDK(KP587785252), TF, VMUL(LDK(KP951056516), TC)));
|
|
TO = VBYI(VFMA(LDK(KP951056516), TF, VMUL(LDK(KP587785252), TC)));
|
|
ST(&(x[0]), VADD(TH, TK), ms, &(x[0]));
|
|
TP = VADD(TM, TL);
|
|
ST(&(x[WS(rs, 4)]), VADD(TO, TP), ms, &(x[0]));
|
|
ST(&(x[WS(rs, 6)]), VSUB(TP, TO), ms, &(x[0]));
|
|
TN = VSUB(TL, TM);
|
|
ST(&(x[WS(rs, 2)]), VADD(TG, TN), ms, &(x[0]));
|
|
ST(&(x[WS(rs, 8)]), VSUB(TN, TG), ms, &(x[0]));
|
|
}
|
|
}
|
|
}
|
|
VLEAVE();
|
|
}
|
|
|
|
static const tw_instr twinstr[] = {
|
|
VTW(0, 1),
|
|
VTW(0, 2),
|
|
VTW(0, 3),
|
|
VTW(0, 4),
|
|
VTW(0, 5),
|
|
VTW(0, 6),
|
|
VTW(0, 7),
|
|
VTW(0, 8),
|
|
VTW(0, 9),
|
|
{ TW_NEXT, VL, 0 }
|
|
};
|
|
|
|
static const ct_desc desc = { 10, XSIMD_STRING("t2fv_10"), twinstr, &GENUS, { 45, 24, 6, 0 }, 0, 0, 0 };
|
|
|
|
void XSIMD(codelet_t2fv_10) (planner *p) {
|
|
X(kdft_dit_register) (p, t2fv_10, &desc);
|
|
}
|
|
#endif
|