furnace/extern/fftw/dft/scalar/codelets/n1_10.c
2022-05-31 03:24:29 -05:00

362 lines
10 KiB
C

/*
* Copyright (c) 2003, 2007-14 Matteo Frigo
* Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
*/
/* This file was automatically generated --- DO NOT EDIT */
/* Generated on Tue Sep 14 10:44:24 EDT 2021 */
#include "dft/codelet-dft.h"
#if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
/* Generated by: ../../../genfft/gen_notw.native -fma -compact -variables 4 -pipeline-latency 4 -n 10 -name n1_10 -include dft/scalar/n.h */
/*
* This function contains 84 FP additions, 36 FP multiplications,
* (or, 48 additions, 0 multiplications, 36 fused multiply/add),
* 41 stack variables, 4 constants, and 40 memory accesses
*/
#include "dft/scalar/n.h"
static void n1_10(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs)
{
DK(KP951056516, +0.951056516295153572116439333379382143405698634);
DK(KP559016994, +0.559016994374947424102293417182819058860154590);
DK(KP250000000, +0.250000000000000000000000000000000000000000000);
DK(KP618033988, +0.618033988749894848204586834365638117720309180);
{
INT i;
for (i = v; i > 0; i = i - 1, ri = ri + ivs, ii = ii + ivs, ro = ro + ovs, io = io + ovs, MAKE_VOLATILE_STRIDE(40, is), MAKE_VOLATILE_STRIDE(40, os)) {
E T3, Tj, TN, T1b, TU, TV, T1j, T1i, Tm, Tp, Tq, Ta, Th, Ti, TA;
E TH, T17, T14, T1c, T1d, T1e, TO, TP, TQ;
{
E T1, T2, TL, TM;
T1 = ri[0];
T2 = ri[WS(is, 5)];
T3 = T1 - T2;
Tj = T1 + T2;
TL = ii[0];
TM = ii[WS(is, 5)];
TN = TL - TM;
T1b = TL + TM;
}
{
E T6, Tk, Tg, To, T9, Tl, Td, Tn;
{
E T4, T5, Te, Tf;
T4 = ri[WS(is, 2)];
T5 = ri[WS(is, 7)];
T6 = T4 - T5;
Tk = T4 + T5;
Te = ri[WS(is, 6)];
Tf = ri[WS(is, 1)];
Tg = Te - Tf;
To = Te + Tf;
}
{
E T7, T8, Tb, Tc;
T7 = ri[WS(is, 8)];
T8 = ri[WS(is, 3)];
T9 = T7 - T8;
Tl = T7 + T8;
Tb = ri[WS(is, 4)];
Tc = ri[WS(is, 9)];
Td = Tb - Tc;
Tn = Tb + Tc;
}
TU = T6 - T9;
TV = Td - Tg;
T1j = Tk - Tl;
T1i = Tn - To;
Tm = Tk + Tl;
Tp = Tn + To;
Tq = Tm + Tp;
Ta = T6 + T9;
Th = Td + Tg;
Ti = Ta + Th;
}
{
E Tw, T15, TG, T13, Tz, T16, TD, T12;
{
E Tu, Tv, TE, TF;
Tu = ii[WS(is, 2)];
Tv = ii[WS(is, 7)];
Tw = Tu - Tv;
T15 = Tu + Tv;
TE = ii[WS(is, 6)];
TF = ii[WS(is, 1)];
TG = TE - TF;
T13 = TE + TF;
}
{
E Tx, Ty, TB, TC;
Tx = ii[WS(is, 8)];
Ty = ii[WS(is, 3)];
Tz = Tx - Ty;
T16 = Tx + Ty;
TB = ii[WS(is, 4)];
TC = ii[WS(is, 9)];
TD = TB - TC;
T12 = TB + TC;
}
TA = Tw - Tz;
TH = TD - TG;
T17 = T15 - T16;
T14 = T12 - T13;
T1c = T15 + T16;
T1d = T12 + T13;
T1e = T1c + T1d;
TO = Tw + Tz;
TP = TD + TG;
TQ = TO + TP;
}
ro[WS(os, 5)] = T3 + Ti;
io[WS(os, 5)] = TN + TQ;
ro[0] = Tj + Tq;
io[0] = T1b + T1e;
{
E TI, TK, Tt, TJ, Tr, Ts;
TI = FMA(KP618033988, TH, TA);
TK = FNMS(KP618033988, TA, TH);
Tr = FNMS(KP250000000, Ti, T3);
Ts = Ta - Th;
Tt = FMA(KP559016994, Ts, Tr);
TJ = FNMS(KP559016994, Ts, Tr);
ro[WS(os, 9)] = FNMS(KP951056516, TI, Tt);
ro[WS(os, 3)] = FMA(KP951056516, TK, TJ);
ro[WS(os, 1)] = FMA(KP951056516, TI, Tt);
ro[WS(os, 7)] = FNMS(KP951056516, TK, TJ);
}
{
E TW, TY, TT, TX, TR, TS;
TW = FMA(KP618033988, TV, TU);
TY = FNMS(KP618033988, TU, TV);
TR = FNMS(KP250000000, TQ, TN);
TS = TO - TP;
TT = FMA(KP559016994, TS, TR);
TX = FNMS(KP559016994, TS, TR);
io[WS(os, 1)] = FNMS(KP951056516, TW, TT);
io[WS(os, 7)] = FMA(KP951056516, TY, TX);
io[WS(os, 9)] = FMA(KP951056516, TW, TT);
io[WS(os, 3)] = FNMS(KP951056516, TY, TX);
}
{
E T18, T1a, T11, T19, TZ, T10;
T18 = FNMS(KP618033988, T17, T14);
T1a = FMA(KP618033988, T14, T17);
TZ = FNMS(KP250000000, Tq, Tj);
T10 = Tm - Tp;
T11 = FNMS(KP559016994, T10, TZ);
T19 = FMA(KP559016994, T10, TZ);
ro[WS(os, 2)] = FNMS(KP951056516, T18, T11);
ro[WS(os, 6)] = FMA(KP951056516, T1a, T19);
ro[WS(os, 8)] = FMA(KP951056516, T18, T11);
ro[WS(os, 4)] = FNMS(KP951056516, T1a, T19);
}
{
E T1k, T1m, T1h, T1l, T1f, T1g;
T1k = FNMS(KP618033988, T1j, T1i);
T1m = FMA(KP618033988, T1i, T1j);
T1f = FNMS(KP250000000, T1e, T1b);
T1g = T1c - T1d;
T1h = FNMS(KP559016994, T1g, T1f);
T1l = FMA(KP559016994, T1g, T1f);
io[WS(os, 2)] = FMA(KP951056516, T1k, T1h);
io[WS(os, 6)] = FNMS(KP951056516, T1m, T1l);
io[WS(os, 8)] = FNMS(KP951056516, T1k, T1h);
io[WS(os, 4)] = FMA(KP951056516, T1m, T1l);
}
}
}
}
static const kdft_desc desc = { 10, "n1_10", { 48, 0, 36, 0 }, &GENUS, 0, 0, 0, 0 };
void X(codelet_n1_10) (planner *p) { X(kdft_register) (p, n1_10, &desc);
}
#else
/* Generated by: ../../../genfft/gen_notw.native -compact -variables 4 -pipeline-latency 4 -n 10 -name n1_10 -include dft/scalar/n.h */
/*
* This function contains 84 FP additions, 24 FP multiplications,
* (or, 72 additions, 12 multiplications, 12 fused multiply/add),
* 41 stack variables, 4 constants, and 40 memory accesses
*/
#include "dft/scalar/n.h"
static void n1_10(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs)
{
DK(KP250000000, +0.250000000000000000000000000000000000000000000);
DK(KP559016994, +0.559016994374947424102293417182819058860154590);
DK(KP587785252, +0.587785252292473129168705954639072768597652438);
DK(KP951056516, +0.951056516295153572116439333379382143405698634);
{
INT i;
for (i = v; i > 0; i = i - 1, ri = ri + ivs, ii = ii + ivs, ro = ro + ovs, io = io + ovs, MAKE_VOLATILE_STRIDE(40, is), MAKE_VOLATILE_STRIDE(40, os)) {
E T3, Tj, TQ, T1e, TU, TV, T1c, T1b, Tm, Tp, Tq, Ta, Th, Ti, TA;
E TH, T17, T14, T1f, T1g, T1h, TL, TM, TR;
{
E T1, T2, TO, TP;
T1 = ri[0];
T2 = ri[WS(is, 5)];
T3 = T1 - T2;
Tj = T1 + T2;
TO = ii[0];
TP = ii[WS(is, 5)];
TQ = TO - TP;
T1e = TO + TP;
}
{
E T6, Tk, Tg, To, T9, Tl, Td, Tn;
{
E T4, T5, Te, Tf;
T4 = ri[WS(is, 2)];
T5 = ri[WS(is, 7)];
T6 = T4 - T5;
Tk = T4 + T5;
Te = ri[WS(is, 6)];
Tf = ri[WS(is, 1)];
Tg = Te - Tf;
To = Te + Tf;
}
{
E T7, T8, Tb, Tc;
T7 = ri[WS(is, 8)];
T8 = ri[WS(is, 3)];
T9 = T7 - T8;
Tl = T7 + T8;
Tb = ri[WS(is, 4)];
Tc = ri[WS(is, 9)];
Td = Tb - Tc;
Tn = Tb + Tc;
}
TU = T6 - T9;
TV = Td - Tg;
T1c = Tk - Tl;
T1b = Tn - To;
Tm = Tk + Tl;
Tp = Tn + To;
Tq = Tm + Tp;
Ta = T6 + T9;
Th = Td + Tg;
Ti = Ta + Th;
}
{
E Tw, T15, TG, T13, Tz, T16, TD, T12;
{
E Tu, Tv, TE, TF;
Tu = ii[WS(is, 2)];
Tv = ii[WS(is, 7)];
Tw = Tu - Tv;
T15 = Tu + Tv;
TE = ii[WS(is, 6)];
TF = ii[WS(is, 1)];
TG = TE - TF;
T13 = TE + TF;
}
{
E Tx, Ty, TB, TC;
Tx = ii[WS(is, 8)];
Ty = ii[WS(is, 3)];
Tz = Tx - Ty;
T16 = Tx + Ty;
TB = ii[WS(is, 4)];
TC = ii[WS(is, 9)];
TD = TB - TC;
T12 = TB + TC;
}
TA = Tw - Tz;
TH = TD - TG;
T17 = T15 - T16;
T14 = T12 - T13;
T1f = T15 + T16;
T1g = T12 + T13;
T1h = T1f + T1g;
TL = Tw + Tz;
TM = TD + TG;
TR = TL + TM;
}
ro[WS(os, 5)] = T3 + Ti;
io[WS(os, 5)] = TQ + TR;
ro[0] = Tj + Tq;
io[0] = T1e + T1h;
{
E TI, TK, Tt, TJ, Tr, Ts;
TI = FMA(KP951056516, TA, KP587785252 * TH);
TK = FNMS(KP587785252, TA, KP951056516 * TH);
Tr = KP559016994 * (Ta - Th);
Ts = FNMS(KP250000000, Ti, T3);
Tt = Tr + Ts;
TJ = Ts - Tr;
ro[WS(os, 9)] = Tt - TI;
ro[WS(os, 3)] = TJ + TK;
ro[WS(os, 1)] = Tt + TI;
ro[WS(os, 7)] = TJ - TK;
}
{
E TW, TY, TT, TX, TN, TS;
TW = FMA(KP951056516, TU, KP587785252 * TV);
TY = FNMS(KP587785252, TU, KP951056516 * TV);
TN = KP559016994 * (TL - TM);
TS = FNMS(KP250000000, TR, TQ);
TT = TN + TS;
TX = TS - TN;
io[WS(os, 1)] = TT - TW;
io[WS(os, 7)] = TY + TX;
io[WS(os, 9)] = TW + TT;
io[WS(os, 3)] = TX - TY;
}
{
E T18, T1a, T11, T19, TZ, T10;
T18 = FNMS(KP587785252, T17, KP951056516 * T14);
T1a = FMA(KP951056516, T17, KP587785252 * T14);
TZ = FNMS(KP250000000, Tq, Tj);
T10 = KP559016994 * (Tm - Tp);
T11 = TZ - T10;
T19 = T10 + TZ;
ro[WS(os, 2)] = T11 - T18;
ro[WS(os, 6)] = T19 + T1a;
ro[WS(os, 8)] = T11 + T18;
ro[WS(os, 4)] = T19 - T1a;
}
{
E T1d, T1l, T1k, T1m, T1i, T1j;
T1d = FNMS(KP587785252, T1c, KP951056516 * T1b);
T1l = FMA(KP951056516, T1c, KP587785252 * T1b);
T1i = FNMS(KP250000000, T1h, T1e);
T1j = KP559016994 * (T1f - T1g);
T1k = T1i - T1j;
T1m = T1j + T1i;
io[WS(os, 2)] = T1d + T1k;
io[WS(os, 6)] = T1m - T1l;
io[WS(os, 8)] = T1k - T1d;
io[WS(os, 4)] = T1l + T1m;
}
}
}
}
static const kdft_desc desc = { 10, "n1_10", { 72, 12, 12, 0 }, &GENUS, 0, 0, 0, 0 };
void X(codelet_n1_10) (planner *p) { X(kdft_register) (p, n1_10, &desc);
}
#endif