mirror of
https://github.com/tildearrow/furnace.git
synced 2024-12-17 22:10:12 +00:00
54e93db207
not reliable yet
288 lines
8.8 KiB
OCaml
288 lines
8.8 KiB
OCaml
(*
|
|
* Copyright (c) 1997-1999 Massachusetts Institute of Technology
|
|
* Copyright (c) 2003, 2007-14 Matteo Frigo
|
|
* Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
|
*
|
|
*)
|
|
|
|
(*************************************************************
|
|
* Conversion of the dag to an assignment list
|
|
*************************************************************)
|
|
(*
|
|
* This function is messy. The main problem is that we want to
|
|
* inline dag nodes conditionally, depending on how many times they
|
|
* are used. The Right Thing to do would be to modify the
|
|
* state monad to propagate some of the state backwards, so that
|
|
* we know whether a given node will be used again in the future.
|
|
* This modification is trivial in a lazy language, but it is
|
|
* messy in a strict language like ML.
|
|
*
|
|
* In this implementation, we just do the obvious thing, i.e., visit
|
|
* the dag twice, the first to count the node usages, and the second to
|
|
* produce the output.
|
|
*)
|
|
|
|
open Monads.StateMonad
|
|
open Monads.MemoMonad
|
|
open Expr
|
|
|
|
let fresh = Variable.make_temporary
|
|
let node_insert x = Assoctable.insert Expr.hash x
|
|
let node_lookup x = Assoctable.lookup Expr.hash (==) x
|
|
let empty = Assoctable.empty
|
|
|
|
let fetchAl =
|
|
fetchState >>= (fun (al, _, _) -> returnM al)
|
|
|
|
let storeAl al =
|
|
fetchState >>= (fun (_, visited, visited') ->
|
|
storeState (al, visited, visited'))
|
|
|
|
let fetchVisited = fetchState >>= (fun (_, v, _) -> returnM v)
|
|
|
|
let storeVisited visited =
|
|
fetchState >>= (fun (al, _, visited') ->
|
|
storeState (al, visited, visited'))
|
|
|
|
let fetchVisited' = fetchState >>= (fun (_, _, v') -> returnM v')
|
|
let storeVisited' visited' =
|
|
fetchState >>= (fun (al, visited, _) ->
|
|
storeState (al, visited, visited'))
|
|
let lookupVisitedM' key =
|
|
fetchVisited' >>= fun table ->
|
|
returnM (node_lookup key table)
|
|
let insertVisitedM' key value =
|
|
fetchVisited' >>= fun table ->
|
|
storeVisited' (node_insert key value table)
|
|
|
|
let counting f x =
|
|
fetchVisited >>= (fun v ->
|
|
match node_lookup x v with
|
|
Some count ->
|
|
let incr_cnt =
|
|
fetchVisited >>= (fun v' ->
|
|
storeVisited (node_insert x (count + 1) v'))
|
|
in
|
|
begin
|
|
match x with
|
|
(* Uminus is always inlined. Visit child *)
|
|
Uminus y -> f y >> incr_cnt
|
|
| _ -> incr_cnt
|
|
end
|
|
| None ->
|
|
f x >> fetchVisited >>= (fun v' ->
|
|
storeVisited (node_insert x 1 v')))
|
|
|
|
let with_varM v x =
|
|
fetchAl >>= (fun al -> storeAl ((v, x) :: al)) >> returnM (Load v)
|
|
|
|
let inlineM = returnM
|
|
|
|
let with_tempM x = match x with
|
|
| Load v when Variable.is_temporary v -> inlineM x (* avoid trivial moves *)
|
|
| _ -> with_varM (fresh ()) x
|
|
|
|
(* declare a temporary only if node is used more than once *)
|
|
let with_temp_maybeM node x =
|
|
fetchVisited >>= (fun v ->
|
|
match node_lookup node v with
|
|
Some count ->
|
|
if (count = 1 && !Magic.inline_single) then
|
|
inlineM x
|
|
else
|
|
with_tempM x
|
|
| None ->
|
|
failwith "with_temp_maybeM")
|
|
type fma =
|
|
NO_FMA
|
|
| FMA of expr * expr * expr (* FMA (a, b, c) => a + b * c *)
|
|
| FMS of expr * expr * expr (* FMS (a, b, c) => -a + b * c *)
|
|
| FNMS of expr * expr * expr (* FNMS (a, b, c) => a - b * c *)
|
|
|
|
let good_for_fma (a, b) =
|
|
let good = function
|
|
| NaN I -> true
|
|
| NaN CONJ -> true
|
|
| NaN _ -> false
|
|
| Times(NaN _, _) -> false
|
|
| Times(_, NaN _) -> false
|
|
| _ -> true
|
|
in good a && good b
|
|
|
|
let build_fma l =
|
|
if (not !Magic.enable_fma) then NO_FMA
|
|
else match l with
|
|
| [a; Uminus (Times (b, c))] when good_for_fma (b, c) -> FNMS (a, b, c)
|
|
| [Uminus (Times (b, c)); a] when good_for_fma (b, c) -> FNMS (a, b, c)
|
|
| [Uminus a; Times (b, c)] when good_for_fma (b, c) -> FMS (a, b, c)
|
|
| [Times (b, c); Uminus a] when good_for_fma (b, c) -> FMS (a, b, c)
|
|
| [a; Times (b, c)] when good_for_fma (b, c) -> FMA (a, b, c)
|
|
| [Times (b, c); a] when good_for_fma (b, c) -> FMA (a, b, c)
|
|
| _ -> NO_FMA
|
|
|
|
let children_fma l = match build_fma l with
|
|
| FMA (a, b, c) -> Some (a, b, c)
|
|
| FMS (a, b, c) -> Some (a, b, c)
|
|
| FNMS (a, b, c) -> Some (a, b, c)
|
|
| NO_FMA -> None
|
|
|
|
|
|
let rec visitM x =
|
|
counting (function
|
|
| Load v -> returnM ()
|
|
| Num a -> returnM ()
|
|
| NaN a -> returnM ()
|
|
| Store (v, x) -> visitM x
|
|
| Plus a -> (match children_fma a with
|
|
None -> mapM visitM a >> returnM ()
|
|
| Some (a, b, c) ->
|
|
(* visit fma's arguments twice to make sure they are not inlined *)
|
|
visitM a >> visitM a >>
|
|
visitM b >> visitM b >>
|
|
visitM c >> visitM c)
|
|
| Times (a, b) -> visitM a >> visitM b
|
|
| CTimes (a, b) -> visitM a >> visitM b
|
|
| CTimesJ (a, b) -> visitM a >> visitM b
|
|
| Uminus a -> visitM a)
|
|
x
|
|
|
|
let visit_rootsM = mapM visitM
|
|
|
|
|
|
let rec expr_of_nodeM x =
|
|
memoizing lookupVisitedM' insertVisitedM'
|
|
(function x -> match x with
|
|
| Load v ->
|
|
if (Variable.is_temporary v) then
|
|
inlineM (Load v)
|
|
else if (Variable.is_locative v && !Magic.inline_loads) then
|
|
inlineM (Load v)
|
|
else if (Variable.is_constant v && !Magic.inline_loads_constants) then
|
|
inlineM (Load v)
|
|
else
|
|
with_tempM (Load v)
|
|
| Num a ->
|
|
if !Magic.inline_constants then
|
|
inlineM (Num a)
|
|
else
|
|
with_temp_maybeM x (Num a)
|
|
| NaN a -> inlineM (NaN a)
|
|
| Store (v, x) ->
|
|
expr_of_nodeM x >>=
|
|
(if !Magic.trivial_stores then with_tempM else inlineM) >>=
|
|
with_varM v
|
|
|
|
| Plus a ->
|
|
begin
|
|
match build_fma a with
|
|
FMA (a, b, c) ->
|
|
expr_of_nodeM a >>= fun a' ->
|
|
expr_of_nodeM b >>= fun b' ->
|
|
expr_of_nodeM c >>= fun c' ->
|
|
with_temp_maybeM x (Plus [a'; Times (b', c')])
|
|
| FMS (a, b, c) ->
|
|
expr_of_nodeM a >>= fun a' ->
|
|
expr_of_nodeM b >>= fun b' ->
|
|
expr_of_nodeM c >>= fun c' ->
|
|
with_temp_maybeM x
|
|
(Plus [Times (b', c'); Uminus a'])
|
|
| FNMS (a, b, c) ->
|
|
expr_of_nodeM a >>= fun a' ->
|
|
expr_of_nodeM b >>= fun b' ->
|
|
expr_of_nodeM c >>= fun c' ->
|
|
with_temp_maybeM x
|
|
(Plus [a'; Uminus (Times (b', c'))])
|
|
| NO_FMA ->
|
|
mapM expr_of_nodeM a >>= fun a' ->
|
|
with_temp_maybeM x (Plus a')
|
|
end
|
|
| CTimes (Load _ as a, b) when !Magic.generate_bytw ->
|
|
expr_of_nodeM b >>= fun b' ->
|
|
with_tempM (CTimes (a, b'))
|
|
| CTimes (a, b) ->
|
|
expr_of_nodeM a >>= fun a' ->
|
|
expr_of_nodeM b >>= fun b' ->
|
|
with_tempM (CTimes (a', b'))
|
|
| CTimesJ (Load _ as a, b) when !Magic.generate_bytw ->
|
|
expr_of_nodeM b >>= fun b' ->
|
|
with_tempM (CTimesJ (a, b'))
|
|
| CTimesJ (a, b) ->
|
|
expr_of_nodeM a >>= fun a' ->
|
|
expr_of_nodeM b >>= fun b' ->
|
|
with_tempM (CTimesJ (a', b'))
|
|
| Times (a, b) ->
|
|
expr_of_nodeM a >>= fun a' ->
|
|
expr_of_nodeM b >>= fun b' ->
|
|
begin
|
|
match a' with
|
|
Num a'' when !Magic.strength_reduce_mul && Number.is_two a'' ->
|
|
(inlineM b' >>= fun b'' ->
|
|
with_temp_maybeM x (Plus [b''; b'']))
|
|
| _ -> with_temp_maybeM x (Times (a', b'))
|
|
end
|
|
| Uminus a ->
|
|
expr_of_nodeM a >>= fun a' ->
|
|
inlineM (Uminus a'))
|
|
x
|
|
|
|
let expr_of_rootsM = mapM expr_of_nodeM
|
|
|
|
let peek_alistM roots =
|
|
visit_rootsM roots >> expr_of_rootsM roots >> fetchAl
|
|
|
|
let wrap_assign (a, b) = Expr.Assign (a, b)
|
|
|
|
let to_assignments dag =
|
|
let () = Util.info "begin to_alist" in
|
|
let al = List.rev (runM ([], empty, empty) peek_alistM dag) in
|
|
let res = List.map wrap_assign al in
|
|
let () = Util.info "end to_alist" in
|
|
res
|
|
|
|
|
|
(* dump alist in `dot' format *)
|
|
let dump print alist =
|
|
let vs v = "\"" ^ (Variable.unparse v) ^ "\"" in
|
|
begin
|
|
print "digraph G {\n";
|
|
print "\tsize=\"6,6\";\n";
|
|
|
|
(* all input nodes have the same rank *)
|
|
print "{ rank = same;\n";
|
|
List.iter (fun (Expr.Assign (v, x)) ->
|
|
List.iter (fun y ->
|
|
if (Variable.is_locative y) then print("\t" ^ (vs y) ^ ";\n"))
|
|
(Expr.find_vars x))
|
|
alist;
|
|
print "}\n";
|
|
|
|
(* all output nodes have the same rank *)
|
|
print "{ rank = same;\n";
|
|
List.iter (fun (Expr.Assign (v, x)) ->
|
|
if (Variable.is_locative v) then print("\t" ^ (vs v) ^ ";\n"))
|
|
alist;
|
|
print "}\n";
|
|
|
|
(* edges *)
|
|
List.iter (fun (Expr.Assign (v, x)) ->
|
|
List.iter (fun y -> print("\t" ^ (vs y) ^ " -> " ^ (vs v) ^ ";\n"))
|
|
(Expr.find_vars x))
|
|
alist;
|
|
|
|
print "}\n";
|
|
end
|
|
|