furnace/extern/fftw/dft/simd/common/n2bv_16.c
2022-05-31 03:24:29 -05:00

422 lines
13 KiB
C

/*
* Copyright (c) 2003, 2007-14 Matteo Frigo
* Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
*/
/* This file was automatically generated --- DO NOT EDIT */
/* Generated on Tue Sep 14 10:45:16 EDT 2021 */
#include "dft/codelet-dft.h"
#if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
/* Generated by: ../../../genfft/gen_notw_c.native -fma -simd -compact -variables 4 -pipeline-latency 8 -sign 1 -n 16 -name n2bv_16 -with-ostride 2 -include dft/simd/n2b.h -store-multiple 2 */
/*
* This function contains 72 FP additions, 34 FP multiplications,
* (or, 38 additions, 0 multiplications, 34 fused multiply/add),
* 38 stack variables, 3 constants, and 40 memory accesses
*/
#include "dft/simd/n2b.h"
static void n2bv_16(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs)
{
DVK(KP923879532, +0.923879532511286756128183189396788286822416626);
DVK(KP707106781, +0.707106781186547524400844362104849039284835938);
DVK(KP414213562, +0.414213562373095048801688724209698078569671875);
{
INT i;
const R *xi;
R *xo;
xi = ii;
xo = io;
for (i = v; i > 0; i = i - VL, xi = xi + (VL * ivs), xo = xo + (VL * ovs), MAKE_VOLATILE_STRIDE(32, is), MAKE_VOLATILE_STRIDE(32, os)) {
V T7, TU, Tz, TH, Tu, TV, TA, TK, Te, TX, TC, TO, Tl, TY, TD;
V TR;
{
V T1, T2, T3, T4, T5, T6;
T1 = LD(&(xi[0]), ivs, &(xi[0]));
T2 = LD(&(xi[WS(is, 8)]), ivs, &(xi[0]));
T3 = VADD(T1, T2);
T4 = LD(&(xi[WS(is, 4)]), ivs, &(xi[0]));
T5 = LD(&(xi[WS(is, 12)]), ivs, &(xi[0]));
T6 = VADD(T4, T5);
T7 = VSUB(T3, T6);
TU = VSUB(T4, T5);
Tz = VADD(T3, T6);
TH = VSUB(T1, T2);
}
{
V Tq, TI, Tt, TJ;
{
V To, Tp, Tr, Ts;
To = LD(&(xi[WS(is, 2)]), ivs, &(xi[0]));
Tp = LD(&(xi[WS(is, 10)]), ivs, &(xi[0]));
Tq = VADD(To, Tp);
TI = VSUB(To, Tp);
Tr = LD(&(xi[WS(is, 14)]), ivs, &(xi[0]));
Ts = LD(&(xi[WS(is, 6)]), ivs, &(xi[0]));
Tt = VADD(Tr, Ts);
TJ = VSUB(Tr, Ts);
}
Tu = VSUB(Tq, Tt);
TV = VSUB(TI, TJ);
TA = VADD(Tq, Tt);
TK = VADD(TI, TJ);
}
{
V Ta, TM, Td, TN;
{
V T8, T9, Tb, Tc;
T8 = LD(&(xi[WS(is, 1)]), ivs, &(xi[WS(is, 1)]));
T9 = LD(&(xi[WS(is, 9)]), ivs, &(xi[WS(is, 1)]));
Ta = VADD(T8, T9);
TM = VSUB(T8, T9);
Tb = LD(&(xi[WS(is, 5)]), ivs, &(xi[WS(is, 1)]));
Tc = LD(&(xi[WS(is, 13)]), ivs, &(xi[WS(is, 1)]));
Td = VADD(Tb, Tc);
TN = VSUB(Tb, Tc);
}
Te = VSUB(Ta, Td);
TX = VFMA(LDK(KP414213562), TM, TN);
TC = VADD(Ta, Td);
TO = VFNMS(LDK(KP414213562), TN, TM);
}
{
V Th, TP, Tk, TQ;
{
V Tf, Tg, Ti, Tj;
Tf = LD(&(xi[WS(is, 15)]), ivs, &(xi[WS(is, 1)]));
Tg = LD(&(xi[WS(is, 7)]), ivs, &(xi[WS(is, 1)]));
Th = VADD(Tf, Tg);
TP = VSUB(Tf, Tg);
Ti = LD(&(xi[WS(is, 3)]), ivs, &(xi[WS(is, 1)]));
Tj = LD(&(xi[WS(is, 11)]), ivs, &(xi[WS(is, 1)]));
Tk = VADD(Ti, Tj);
TQ = VSUB(Tj, Ti);
}
Tl = VSUB(Th, Tk);
TY = VFMA(LDK(KP414213562), TP, TQ);
TD = VADD(Th, Tk);
TR = VFNMS(LDK(KP414213562), TQ, TP);
}
{
V T1b, T1c, T1d, T1e;
{
V TB, TE, TF, TG;
TB = VSUB(Tz, TA);
TE = VSUB(TC, TD);
T1b = VFNMSI(TE, TB);
STM2(&(xo[24]), T1b, ovs, &(xo[0]));
T1c = VFMAI(TE, TB);
STM2(&(xo[8]), T1c, ovs, &(xo[0]));
TF = VADD(Tz, TA);
TG = VADD(TC, TD);
T1d = VSUB(TF, TG);
STM2(&(xo[16]), T1d, ovs, &(xo[0]));
T1e = VADD(TF, TG);
STM2(&(xo[0]), T1e, ovs, &(xo[0]));
}
{
V T1f, T1g, T1h, T1i;
{
V Tn, Tx, Tw, Ty, Tm, Tv;
Tm = VADD(Te, Tl);
Tn = VFNMS(LDK(KP707106781), Tm, T7);
Tx = VFMA(LDK(KP707106781), Tm, T7);
Tv = VSUB(Te, Tl);
Tw = VFNMS(LDK(KP707106781), Tv, Tu);
Ty = VFMA(LDK(KP707106781), Tv, Tu);
T1f = VFNMSI(Tw, Tn);
STM2(&(xo[12]), T1f, ovs, &(xo[0]));
T1g = VFNMSI(Ty, Tx);
STM2(&(xo[28]), T1g, ovs, &(xo[0]));
T1h = VFMAI(Tw, Tn);
STM2(&(xo[20]), T1h, ovs, &(xo[0]));
T1i = VFMAI(Ty, Tx);
STM2(&(xo[4]), T1i, ovs, &(xo[0]));
}
{
V TT, T11, T10, T12;
{
V TL, TS, TW, TZ;
TL = VFMA(LDK(KP707106781), TK, TH);
TS = VADD(TO, TR);
TT = VFNMS(LDK(KP923879532), TS, TL);
T11 = VFMA(LDK(KP923879532), TS, TL);
TW = VFMA(LDK(KP707106781), TV, TU);
TZ = VSUB(TX, TY);
T10 = VFNMS(LDK(KP923879532), TZ, TW);
T12 = VFMA(LDK(KP923879532), TZ, TW);
}
{
V T1j, T1k, T1l, T1m;
T1j = VFNMSI(T10, TT);
STM2(&(xo[14]), T1j, ovs, &(xo[2]));
STN2(&(xo[12]), T1f, T1j, ovs);
T1k = VFMAI(T12, T11);
STM2(&(xo[2]), T1k, ovs, &(xo[2]));
STN2(&(xo[0]), T1e, T1k, ovs);
T1l = VFMAI(T10, TT);
STM2(&(xo[18]), T1l, ovs, &(xo[2]));
STN2(&(xo[16]), T1d, T1l, ovs);
T1m = VFNMSI(T12, T11);
STM2(&(xo[30]), T1m, ovs, &(xo[2]));
STN2(&(xo[28]), T1g, T1m, ovs);
}
}
{
V T15, T19, T18, T1a;
{
V T13, T14, T16, T17;
T13 = VFNMS(LDK(KP707106781), TK, TH);
T14 = VADD(TX, TY);
T15 = VFNMS(LDK(KP923879532), T14, T13);
T19 = VFMA(LDK(KP923879532), T14, T13);
T16 = VFNMS(LDK(KP707106781), TV, TU);
T17 = VSUB(TO, TR);
T18 = VFMA(LDK(KP923879532), T17, T16);
T1a = VFNMS(LDK(KP923879532), T17, T16);
}
{
V T1n, T1o, T1p, T1q;
T1n = VFMAI(T18, T15);
STM2(&(xo[10]), T1n, ovs, &(xo[2]));
STN2(&(xo[8]), T1c, T1n, ovs);
T1o = VFMAI(T1a, T19);
STM2(&(xo[26]), T1o, ovs, &(xo[2]));
STN2(&(xo[24]), T1b, T1o, ovs);
T1p = VFNMSI(T18, T15);
STM2(&(xo[22]), T1p, ovs, &(xo[2]));
STN2(&(xo[20]), T1h, T1p, ovs);
T1q = VFNMSI(T1a, T19);
STM2(&(xo[6]), T1q, ovs, &(xo[2]));
STN2(&(xo[4]), T1i, T1q, ovs);
}
}
}
}
}
}
VLEAVE();
}
static const kdft_desc desc = { 16, XSIMD_STRING("n2bv_16"), { 38, 0, 34, 0 }, &GENUS, 0, 2, 0, 0 };
void XSIMD(codelet_n2bv_16) (planner *p) { X(kdft_register) (p, n2bv_16, &desc);
}
#else
/* Generated by: ../../../genfft/gen_notw_c.native -simd -compact -variables 4 -pipeline-latency 8 -sign 1 -n 16 -name n2bv_16 -with-ostride 2 -include dft/simd/n2b.h -store-multiple 2 */
/*
* This function contains 72 FP additions, 12 FP multiplications,
* (or, 68 additions, 8 multiplications, 4 fused multiply/add),
* 38 stack variables, 3 constants, and 40 memory accesses
*/
#include "dft/simd/n2b.h"
static void n2bv_16(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs)
{
DVK(KP382683432, +0.382683432365089771728459984030398866761344562);
DVK(KP923879532, +0.923879532511286756128183189396788286822416626);
DVK(KP707106781, +0.707106781186547524400844362104849039284835938);
{
INT i;
const R *xi;
R *xo;
xi = ii;
xo = io;
for (i = v; i > 0; i = i - VL, xi = xi + (VL * ivs), xo = xo + (VL * ovs), MAKE_VOLATILE_STRIDE(32, is), MAKE_VOLATILE_STRIDE(32, os)) {
V Tp, T13, Tu, TY, Tm, T14, Tv, TU, T7, T16, Tx, TN, Te, T17, Ty;
V TQ;
{
V Tn, To, TX, Ts, Tt, TW;
Tn = LD(&(xi[WS(is, 4)]), ivs, &(xi[0]));
To = LD(&(xi[WS(is, 12)]), ivs, &(xi[0]));
TX = VADD(Tn, To);
Ts = LD(&(xi[0]), ivs, &(xi[0]));
Tt = LD(&(xi[WS(is, 8)]), ivs, &(xi[0]));
TW = VADD(Ts, Tt);
Tp = VSUB(Tn, To);
T13 = VADD(TW, TX);
Tu = VSUB(Ts, Tt);
TY = VSUB(TW, TX);
}
{
V Ti, TS, Tl, TT;
{
V Tg, Th, Tj, Tk;
Tg = LD(&(xi[WS(is, 2)]), ivs, &(xi[0]));
Th = LD(&(xi[WS(is, 10)]), ivs, &(xi[0]));
Ti = VSUB(Tg, Th);
TS = VADD(Tg, Th);
Tj = LD(&(xi[WS(is, 14)]), ivs, &(xi[0]));
Tk = LD(&(xi[WS(is, 6)]), ivs, &(xi[0]));
Tl = VSUB(Tj, Tk);
TT = VADD(Tj, Tk);
}
Tm = VMUL(LDK(KP707106781), VSUB(Ti, Tl));
T14 = VADD(TS, TT);
Tv = VMUL(LDK(KP707106781), VADD(Ti, Tl));
TU = VSUB(TS, TT);
}
{
V T3, TL, T6, TM;
{
V T1, T2, T4, T5;
T1 = LD(&(xi[WS(is, 1)]), ivs, &(xi[WS(is, 1)]));
T2 = LD(&(xi[WS(is, 9)]), ivs, &(xi[WS(is, 1)]));
T3 = VSUB(T1, T2);
TL = VADD(T1, T2);
T4 = LD(&(xi[WS(is, 5)]), ivs, &(xi[WS(is, 1)]));
T5 = LD(&(xi[WS(is, 13)]), ivs, &(xi[WS(is, 1)]));
T6 = VSUB(T4, T5);
TM = VADD(T4, T5);
}
T7 = VFNMS(LDK(KP382683432), T6, VMUL(LDK(KP923879532), T3));
T16 = VADD(TL, TM);
Tx = VFMA(LDK(KP382683432), T3, VMUL(LDK(KP923879532), T6));
TN = VSUB(TL, TM);
}
{
V Ta, TO, Td, TP;
{
V T8, T9, Tb, Tc;
T8 = LD(&(xi[WS(is, 15)]), ivs, &(xi[WS(is, 1)]));
T9 = LD(&(xi[WS(is, 7)]), ivs, &(xi[WS(is, 1)]));
Ta = VSUB(T8, T9);
TO = VADD(T8, T9);
Tb = LD(&(xi[WS(is, 3)]), ivs, &(xi[WS(is, 1)]));
Tc = LD(&(xi[WS(is, 11)]), ivs, &(xi[WS(is, 1)]));
Td = VSUB(Tb, Tc);
TP = VADD(Tb, Tc);
}
Te = VFMA(LDK(KP923879532), Ta, VMUL(LDK(KP382683432), Td));
T17 = VADD(TO, TP);
Ty = VFNMS(LDK(KP382683432), Ta, VMUL(LDK(KP923879532), Td));
TQ = VSUB(TO, TP);
}
{
V T1b, T1c, T1d, T1e;
{
V T15, T18, T19, T1a;
T15 = VSUB(T13, T14);
T18 = VBYI(VSUB(T16, T17));
T1b = VSUB(T15, T18);
STM2(&(xo[24]), T1b, ovs, &(xo[0]));
T1c = VADD(T15, T18);
STM2(&(xo[8]), T1c, ovs, &(xo[0]));
T19 = VADD(T13, T14);
T1a = VADD(T16, T17);
T1d = VSUB(T19, T1a);
STM2(&(xo[16]), T1d, ovs, &(xo[0]));
T1e = VADD(T19, T1a);
STM2(&(xo[0]), T1e, ovs, &(xo[0]));
}
{
V T1f, T1g, T1h, T1i;
{
V TV, T11, T10, T12, TR, TZ;
TR = VMUL(LDK(KP707106781), VSUB(TN, TQ));
TV = VBYI(VSUB(TR, TU));
T11 = VBYI(VADD(TU, TR));
TZ = VMUL(LDK(KP707106781), VADD(TN, TQ));
T10 = VSUB(TY, TZ);
T12 = VADD(TY, TZ);
T1f = VADD(TV, T10);
STM2(&(xo[12]), T1f, ovs, &(xo[0]));
T1g = VSUB(T12, T11);
STM2(&(xo[28]), T1g, ovs, &(xo[0]));
T1h = VSUB(T10, TV);
STM2(&(xo[20]), T1h, ovs, &(xo[0]));
T1i = VADD(T11, T12);
STM2(&(xo[4]), T1i, ovs, &(xo[0]));
}
{
V Tr, TB, TA, TC;
{
V Tf, Tq, Tw, Tz;
Tf = VSUB(T7, Te);
Tq = VSUB(Tm, Tp);
Tr = VBYI(VSUB(Tf, Tq));
TB = VBYI(VADD(Tq, Tf));
Tw = VSUB(Tu, Tv);
Tz = VSUB(Tx, Ty);
TA = VSUB(Tw, Tz);
TC = VADD(Tw, Tz);
}
{
V T1j, T1k, T1l, T1m;
T1j = VADD(Tr, TA);
STM2(&(xo[10]), T1j, ovs, &(xo[2]));
STN2(&(xo[8]), T1c, T1j, ovs);
T1k = VSUB(TC, TB);
STM2(&(xo[26]), T1k, ovs, &(xo[2]));
STN2(&(xo[24]), T1b, T1k, ovs);
T1l = VSUB(TA, Tr);
STM2(&(xo[22]), T1l, ovs, &(xo[2]));
STN2(&(xo[20]), T1h, T1l, ovs);
T1m = VADD(TB, TC);
STM2(&(xo[6]), T1m, ovs, &(xo[2]));
STN2(&(xo[4]), T1i, T1m, ovs);
}
}
{
V TF, TJ, TI, TK;
{
V TD, TE, TG, TH;
TD = VADD(Tu, Tv);
TE = VADD(T7, Te);
TF = VADD(TD, TE);
TJ = VSUB(TD, TE);
TG = VADD(Tp, Tm);
TH = VADD(Tx, Ty);
TI = VBYI(VADD(TG, TH));
TK = VBYI(VSUB(TH, TG));
}
{
V T1n, T1o, T1p, T1q;
T1n = VSUB(TF, TI);
STM2(&(xo[30]), T1n, ovs, &(xo[2]));
STN2(&(xo[28]), T1g, T1n, ovs);
T1o = VADD(TJ, TK);
STM2(&(xo[14]), T1o, ovs, &(xo[2]));
STN2(&(xo[12]), T1f, T1o, ovs);
T1p = VADD(TF, TI);
STM2(&(xo[2]), T1p, ovs, &(xo[2]));
STN2(&(xo[0]), T1e, T1p, ovs);
T1q = VSUB(TJ, TK);
STM2(&(xo[18]), T1q, ovs, &(xo[2]));
STN2(&(xo[16]), T1d, T1q, ovs);
}
}
}
}
}
}
VLEAVE();
}
static const kdft_desc desc = { 16, XSIMD_STRING("n2bv_16"), { 68, 8, 4, 0 }, &GENUS, 0, 2, 0, 0 };
void XSIMD(codelet_n2bv_16) (planner *p) { X(kdft_register) (p, n2bv_16, &desc);
}
#endif