furnace/extern/fftw/dft/scalar/codelets/t1_15.c
2022-05-31 03:24:29 -05:00

816 lines
21 KiB
C

/*
* Copyright (c) 2003, 2007-14 Matteo Frigo
* Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
*/
/* This file was automatically generated --- DO NOT EDIT */
/* Generated on Tue Sep 14 10:44:28 EDT 2021 */
#include "dft/codelet-dft.h"
#if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
/* Generated by: ../../../genfft/gen_twiddle.native -fma -compact -variables 4 -pipeline-latency 4 -n 15 -name t1_15 -include dft/scalar/t.h */
/*
* This function contains 184 FP additions, 140 FP multiplications,
* (or, 72 additions, 28 multiplications, 112 fused multiply/add),
* 51 stack variables, 6 constants, and 60 memory accesses
*/
#include "dft/scalar/t.h"
static void t1_15(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
{
DK(KP951056516, +0.951056516295153572116439333379382143405698634);
DK(KP559016994, +0.559016994374947424102293417182819058860154590);
DK(KP250000000, +0.250000000000000000000000000000000000000000000);
DK(KP618033988, +0.618033988749894848204586834365638117720309180);
DK(KP866025403, +0.866025403784438646763723170752936183471402627);
DK(KP500000000, +0.500000000000000000000000000000000000000000000);
{
INT m;
for (m = mb, W = W + (mb * 28); m < me; m = m + 1, ri = ri + ms, ii = ii + ms, W = W + 28, MAKE_VOLATILE_STRIDE(30, rs)) {
E T1, T3j, T1G, T3u, Te, T1B, T3i, T3t, T1y, T2i, T2a, T2M, T37, T2V, Tz;
E T2e, T1O, T2t, T39, T2X, TT, T2f, T1V, T2z, T3a, T2Y, T1e, T2h, T23, T2G;
E T36, T2U;
{
E T7, T1D, Td, T1F;
T1 = ri[0];
T3j = ii[0];
{
E T3, T6, T4, T1C, T2, T5;
T3 = ri[WS(rs, 5)];
T6 = ii[WS(rs, 5)];
T2 = W[8];
T4 = T2 * T3;
T1C = T2 * T6;
T5 = W[9];
T7 = FMA(T5, T6, T4);
T1D = FNMS(T5, T3, T1C);
}
{
E T9, Tc, Ta, T1E, T8, Tb;
T9 = ri[WS(rs, 10)];
Tc = ii[WS(rs, 10)];
T8 = W[18];
Ta = T8 * T9;
T1E = T8 * Tc;
Tb = W[19];
Td = FMA(Tb, Tc, Ta);
T1F = FNMS(Tb, T9, T1E);
}
T1G = T1D - T1F;
T3u = Td - T7;
Te = T7 + Td;
T1B = FNMS(KP500000000, Te, T1);
T3i = T1D + T1F;
T3t = FNMS(KP500000000, T3i, T3j);
}
{
E T1k, T2I, T1w, T28, T1q, T26;
{
E T1g, T1j, T1h, T2H, T1f, T1i;
T1g = ri[WS(rs, 9)];
T1j = ii[WS(rs, 9)];
T1f = W[16];
T1h = T1f * T1g;
T2H = T1f * T1j;
T1i = W[17];
T1k = FMA(T1i, T1j, T1h);
T2I = FNMS(T1i, T1g, T2H);
}
{
E T1s, T1v, T1t, T27, T1r, T1u;
T1s = ri[WS(rs, 4)];
T1v = ii[WS(rs, 4)];
T1r = W[6];
T1t = T1r * T1s;
T27 = T1r * T1v;
T1u = W[7];
T1w = FMA(T1u, T1v, T1t);
T28 = FNMS(T1u, T1s, T27);
}
{
E T1m, T1p, T1n, T25, T1l, T1o;
T1m = ri[WS(rs, 14)];
T1p = ii[WS(rs, 14)];
T1l = W[26];
T1n = T1l * T1m;
T25 = T1l * T1p;
T1o = W[27];
T1q = FMA(T1o, T1p, T1n);
T26 = FNMS(T1o, T1m, T25);
}
{
E T29, T1x, T24, T2L, T2J, T2K;
T29 = T26 - T28;
T1x = T1q + T1w;
T24 = FNMS(KP500000000, T1x, T1k);
T1y = T1k + T1x;
T2i = FMA(KP866025403, T29, T24);
T2a = FNMS(KP866025403, T29, T24);
T2L = T1w - T1q;
T2J = T26 + T28;
T2K = FNMS(KP500000000, T2J, T2I);
T2M = FMA(KP866025403, T2L, T2K);
T37 = T2I + T2J;
T2V = FNMS(KP866025403, T2L, T2K);
}
}
{
E Tl, T2p, Tx, T1M, Tr, T1K;
{
E Th, Tk, Ti, T2o, Tg, Tj;
Th = ri[WS(rs, 3)];
Tk = ii[WS(rs, 3)];
Tg = W[4];
Ti = Tg * Th;
T2o = Tg * Tk;
Tj = W[5];
Tl = FMA(Tj, Tk, Ti);
T2p = FNMS(Tj, Th, T2o);
}
{
E Tt, Tw, Tu, T1L, Ts, Tv;
Tt = ri[WS(rs, 13)];
Tw = ii[WS(rs, 13)];
Ts = W[24];
Tu = Ts * Tt;
T1L = Ts * Tw;
Tv = W[25];
Tx = FMA(Tv, Tw, Tu);
T1M = FNMS(Tv, Tt, T1L);
}
{
E Tn, Tq, To, T1J, Tm, Tp;
Tn = ri[WS(rs, 8)];
Tq = ii[WS(rs, 8)];
Tm = W[14];
To = Tm * Tn;
T1J = Tm * Tq;
Tp = W[15];
Tr = FMA(Tp, Tq, To);
T1K = FNMS(Tp, Tn, T1J);
}
{
E T1N, Ty, T1I, T2s, T2q, T2r;
T1N = T1K - T1M;
Ty = Tr + Tx;
T1I = FNMS(KP500000000, Ty, Tl);
Tz = Tl + Ty;
T2e = FMA(KP866025403, T1N, T1I);
T1O = FNMS(KP866025403, T1N, T1I);
T2s = Tx - Tr;
T2q = T1K + T1M;
T2r = FNMS(KP500000000, T2q, T2p);
T2t = FMA(KP866025403, T2s, T2r);
T39 = T2p + T2q;
T2X = FNMS(KP866025403, T2s, T2r);
}
}
{
E TF, T2v, TR, T1T, TL, T1R;
{
E TB, TE, TC, T2u, TA, TD;
TB = ri[WS(rs, 12)];
TE = ii[WS(rs, 12)];
TA = W[22];
TC = TA * TB;
T2u = TA * TE;
TD = W[23];
TF = FMA(TD, TE, TC);
T2v = FNMS(TD, TB, T2u);
}
{
E TN, TQ, TO, T1S, TM, TP;
TN = ri[WS(rs, 7)];
TQ = ii[WS(rs, 7)];
TM = W[12];
TO = TM * TN;
T1S = TM * TQ;
TP = W[13];
TR = FMA(TP, TQ, TO);
T1T = FNMS(TP, TN, T1S);
}
{
E TH, TK, TI, T1Q, TG, TJ;
TH = ri[WS(rs, 2)];
TK = ii[WS(rs, 2)];
TG = W[2];
TI = TG * TH;
T1Q = TG * TK;
TJ = W[3];
TL = FMA(TJ, TK, TI);
T1R = FNMS(TJ, TH, T1Q);
}
{
E T1U, TS, T1P, T2y, T2w, T2x;
T1U = T1R - T1T;
TS = TL + TR;
T1P = FNMS(KP500000000, TS, TF);
TT = TF + TS;
T2f = FMA(KP866025403, T1U, T1P);
T1V = FNMS(KP866025403, T1U, T1P);
T2y = TR - TL;
T2w = T1R + T1T;
T2x = FNMS(KP500000000, T2w, T2v);
T2z = FMA(KP866025403, T2y, T2x);
T3a = T2v + T2w;
T2Y = FNMS(KP866025403, T2y, T2x);
}
}
{
E T10, T2C, T1c, T21, T16, T1Z;
{
E TW, TZ, TX, T2B, TV, TY;
TW = ri[WS(rs, 6)];
TZ = ii[WS(rs, 6)];
TV = W[10];
TX = TV * TW;
T2B = TV * TZ;
TY = W[11];
T10 = FMA(TY, TZ, TX);
T2C = FNMS(TY, TW, T2B);
}
{
E T18, T1b, T19, T20, T17, T1a;
T18 = ri[WS(rs, 1)];
T1b = ii[WS(rs, 1)];
T17 = W[0];
T19 = T17 * T18;
T20 = T17 * T1b;
T1a = W[1];
T1c = FMA(T1a, T1b, T19);
T21 = FNMS(T1a, T18, T20);
}
{
E T12, T15, T13, T1Y, T11, T14;
T12 = ri[WS(rs, 11)];
T15 = ii[WS(rs, 11)];
T11 = W[20];
T13 = T11 * T12;
T1Y = T11 * T15;
T14 = W[21];
T16 = FMA(T14, T15, T13);
T1Z = FNMS(T14, T12, T1Y);
}
{
E T22, T1d, T1X, T2F, T2D, T2E;
T22 = T1Z - T21;
T1d = T16 + T1c;
T1X = FNMS(KP500000000, T1d, T10);
T1e = T10 + T1d;
T2h = FMA(KP866025403, T22, T1X);
T23 = FNMS(KP866025403, T22, T1X);
T2F = T1c - T16;
T2D = T1Z + T21;
T2E = FNMS(KP500000000, T2D, T2C);
T2G = FMA(KP866025403, T2F, T2E);
T36 = T2C + T2D;
T2U = FNMS(KP866025403, T2F, T2E);
}
}
{
E T3c, T3e, Tf, T1A, T33, T34, T3d, T35;
{
E T38, T3b, TU, T1z;
T38 = T36 - T37;
T3b = T39 - T3a;
T3c = FNMS(KP618033988, T3b, T38);
T3e = FMA(KP618033988, T38, T3b);
Tf = T1 + Te;
TU = Tz + TT;
T1z = T1e + T1y;
T1A = TU + T1z;
T33 = FNMS(KP250000000, T1A, Tf);
T34 = TU - T1z;
}
ri[0] = Tf + T1A;
T3d = FMA(KP559016994, T34, T33);
ri[WS(rs, 9)] = FNMS(KP951056516, T3e, T3d);
ri[WS(rs, 6)] = FMA(KP951056516, T3e, T3d);
T35 = FNMS(KP559016994, T34, T33);
ri[WS(rs, 12)] = FNMS(KP951056516, T3c, T35);
ri[WS(rs, 3)] = FMA(KP951056516, T3c, T35);
}
{
E T3q, T3s, T3k, T3h, T3l, T3m, T3r, T3n;
{
E T3o, T3p, T3f, T3g;
T3o = T1e - T1y;
T3p = Tz - TT;
T3q = FNMS(KP618033988, T3p, T3o);
T3s = FMA(KP618033988, T3o, T3p);
T3k = T3i + T3j;
T3f = T39 + T3a;
T3g = T36 + T37;
T3h = T3f + T3g;
T3l = FNMS(KP250000000, T3h, T3k);
T3m = T3f - T3g;
}
ii[0] = T3h + T3k;
T3r = FMA(KP559016994, T3m, T3l);
ii[WS(rs, 6)] = FNMS(KP951056516, T3s, T3r);
ii[WS(rs, 9)] = FMA(KP951056516, T3s, T3r);
T3n = FNMS(KP559016994, T3m, T3l);
ii[WS(rs, 3)] = FNMS(KP951056516, T3q, T3n);
ii[WS(rs, 12)] = FMA(KP951056516, T3q, T3n);
}
{
E T30, T32, T1H, T2c, T2R, T2S, T31, T2T;
{
E T2W, T2Z, T1W, T2b;
T2W = T2U - T2V;
T2Z = T2X - T2Y;
T30 = FNMS(KP618033988, T2Z, T2W);
T32 = FMA(KP618033988, T2W, T2Z);
T1H = FNMS(KP866025403, T1G, T1B);
T1W = T1O + T1V;
T2b = T23 + T2a;
T2c = T1W + T2b;
T2R = FNMS(KP250000000, T2c, T1H);
T2S = T1W - T2b;
}
ri[WS(rs, 5)] = T1H + T2c;
T31 = FMA(KP559016994, T2S, T2R);
ri[WS(rs, 14)] = FNMS(KP951056516, T32, T31);
ri[WS(rs, 11)] = FMA(KP951056516, T32, T31);
T2T = FNMS(KP559016994, T2S, T2R);
ri[WS(rs, 2)] = FNMS(KP951056516, T30, T2T);
ri[WS(rs, 8)] = FMA(KP951056516, T30, T2T);
}
{
E T3Q, T3S, T3H, T3K, T3L, T3M, T3R, T3N;
{
E T3O, T3P, T3I, T3J;
T3O = T23 - T2a;
T3P = T1O - T1V;
T3Q = FNMS(KP618033988, T3P, T3O);
T3S = FMA(KP618033988, T3O, T3P);
T3H = FNMS(KP866025403, T3u, T3t);
T3I = T2X + T2Y;
T3J = T2U + T2V;
T3K = T3I + T3J;
T3L = FNMS(KP250000000, T3K, T3H);
T3M = T3I - T3J;
}
ii[WS(rs, 5)] = T3K + T3H;
T3R = FMA(KP559016994, T3M, T3L);
ii[WS(rs, 11)] = FNMS(KP951056516, T3S, T3R);
ii[WS(rs, 14)] = FMA(KP951056516, T3S, T3R);
T3N = FNMS(KP559016994, T3M, T3L);
ii[WS(rs, 2)] = FMA(KP951056516, T3Q, T3N);
ii[WS(rs, 8)] = FNMS(KP951056516, T3Q, T3N);
}
{
E T3E, T3G, T3v, T3y, T3z, T3A, T3F, T3B;
{
E T3C, T3D, T3w, T3x;
T3C = T2e - T2f;
T3D = T2h - T2i;
T3E = FMA(KP618033988, T3D, T3C);
T3G = FNMS(KP618033988, T3C, T3D);
T3v = FMA(KP866025403, T3u, T3t);
T3w = T2t + T2z;
T3x = T2G + T2M;
T3y = T3w + T3x;
T3z = FNMS(KP250000000, T3y, T3v);
T3A = T3w - T3x;
}
ii[WS(rs, 10)] = T3y + T3v;
T3F = FNMS(KP559016994, T3A, T3z);
ii[WS(rs, 7)] = FMA(KP951056516, T3G, T3F);
ii[WS(rs, 13)] = FNMS(KP951056516, T3G, T3F);
T3B = FMA(KP559016994, T3A, T3z);
ii[WS(rs, 1)] = FNMS(KP951056516, T3E, T3B);
ii[WS(rs, 4)] = FMA(KP951056516, T3E, T3B);
}
{
E T2O, T2Q, T2d, T2k, T2l, T2m, T2P, T2n;
{
E T2A, T2N, T2g, T2j;
T2A = T2t - T2z;
T2N = T2G - T2M;
T2O = FMA(KP618033988, T2N, T2A);
T2Q = FNMS(KP618033988, T2A, T2N);
T2d = FMA(KP866025403, T1G, T1B);
T2g = T2e + T2f;
T2j = T2h + T2i;
T2k = T2g + T2j;
T2l = FNMS(KP250000000, T2k, T2d);
T2m = T2g - T2j;
}
ri[WS(rs, 10)] = T2d + T2k;
T2P = FNMS(KP559016994, T2m, T2l);
ri[WS(rs, 7)] = FNMS(KP951056516, T2Q, T2P);
ri[WS(rs, 13)] = FMA(KP951056516, T2Q, T2P);
T2n = FMA(KP559016994, T2m, T2l);
ri[WS(rs, 4)] = FNMS(KP951056516, T2O, T2n);
ri[WS(rs, 1)] = FMA(KP951056516, T2O, T2n);
}
}
}
}
static const tw_instr twinstr[] = {
{ TW_FULL, 0, 15 },
{ TW_NEXT, 1, 0 }
};
static const ct_desc desc = { 15, "t1_15", twinstr, &GENUS, { 72, 28, 112, 0 }, 0, 0, 0 };
void X(codelet_t1_15) (planner *p) {
X(kdft_dit_register) (p, t1_15, &desc);
}
#else
/* Generated by: ../../../genfft/gen_twiddle.native -compact -variables 4 -pipeline-latency 4 -n 15 -name t1_15 -include dft/scalar/t.h */
/*
* This function contains 184 FP additions, 112 FP multiplications,
* (or, 128 additions, 56 multiplications, 56 fused multiply/add),
* 65 stack variables, 6 constants, and 60 memory accesses
*/
#include "dft/scalar/t.h"
static void t1_15(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
{
DK(KP587785252, +0.587785252292473129168705954639072768597652438);
DK(KP951056516, +0.951056516295153572116439333379382143405698634);
DK(KP250000000, +0.250000000000000000000000000000000000000000000);
DK(KP559016994, +0.559016994374947424102293417182819058860154590);
DK(KP500000000, +0.500000000000000000000000000000000000000000000);
DK(KP866025403, +0.866025403784438646763723170752936183471402627);
{
INT m;
for (m = mb, W = W + (mb * 28); m < me; m = m + 1, ri = ri + ms, ii = ii + ms, W = W + 28, MAKE_VOLATILE_STRIDE(30, rs)) {
E T1q, T34, Td, T1n, T2S, T35, T13, T1k, T1l, T2E, T2F, T2O, T1H, T1T, T2k;
E T2t, T2f, T2s, T1M, T1U, Tu, TL, TM, T2H, T2I, T2N, T1w, T1Q, T29, T2w;
E T24, T2v, T1B, T1R;
{
E T1, T2R, T6, T1o, Tb, T1p, Tc, T2Q;
T1 = ri[0];
T2R = ii[0];
{
E T3, T5, T2, T4;
T3 = ri[WS(rs, 5)];
T5 = ii[WS(rs, 5)];
T2 = W[8];
T4 = W[9];
T6 = FMA(T2, T3, T4 * T5);
T1o = FNMS(T4, T3, T2 * T5);
}
{
E T8, Ta, T7, T9;
T8 = ri[WS(rs, 10)];
Ta = ii[WS(rs, 10)];
T7 = W[18];
T9 = W[19];
Tb = FMA(T7, T8, T9 * Ta);
T1p = FNMS(T9, T8, T7 * Ta);
}
T1q = KP866025403 * (T1o - T1p);
T34 = KP866025403 * (Tb - T6);
Tc = T6 + Tb;
Td = T1 + Tc;
T1n = FNMS(KP500000000, Tc, T1);
T2Q = T1o + T1p;
T2S = T2Q + T2R;
T35 = FNMS(KP500000000, T2Q, T2R);
}
{
E TR, T2c, T18, T2h, TW, T1E, T11, T1F, T12, T2d, T1d, T1J, T1i, T1K, T1j;
E T2i;
{
E TO, TQ, TN, TP;
TO = ri[WS(rs, 6)];
TQ = ii[WS(rs, 6)];
TN = W[10];
TP = W[11];
TR = FMA(TN, TO, TP * TQ);
T2c = FNMS(TP, TO, TN * TQ);
}
{
E T15, T17, T14, T16;
T15 = ri[WS(rs, 9)];
T17 = ii[WS(rs, 9)];
T14 = W[16];
T16 = W[17];
T18 = FMA(T14, T15, T16 * T17);
T2h = FNMS(T16, T15, T14 * T17);
}
{
E TT, TV, TS, TU;
TT = ri[WS(rs, 11)];
TV = ii[WS(rs, 11)];
TS = W[20];
TU = W[21];
TW = FMA(TS, TT, TU * TV);
T1E = FNMS(TU, TT, TS * TV);
}
{
E TY, T10, TX, TZ;
TY = ri[WS(rs, 1)];
T10 = ii[WS(rs, 1)];
TX = W[0];
TZ = W[1];
T11 = FMA(TX, TY, TZ * T10);
T1F = FNMS(TZ, TY, TX * T10);
}
T12 = TW + T11;
T2d = T1E + T1F;
{
E T1a, T1c, T19, T1b;
T1a = ri[WS(rs, 14)];
T1c = ii[WS(rs, 14)];
T19 = W[26];
T1b = W[27];
T1d = FMA(T19, T1a, T1b * T1c);
T1J = FNMS(T1b, T1a, T19 * T1c);
}
{
E T1f, T1h, T1e, T1g;
T1f = ri[WS(rs, 4)];
T1h = ii[WS(rs, 4)];
T1e = W[6];
T1g = W[7];
T1i = FMA(T1e, T1f, T1g * T1h);
T1K = FNMS(T1g, T1f, T1e * T1h);
}
T1j = T1d + T1i;
T2i = T1J + T1K;
{
E T1D, T1G, T2g, T2j;
T13 = TR + T12;
T1k = T18 + T1j;
T1l = T13 + T1k;
T2E = T2c + T2d;
T2F = T2h + T2i;
T2O = T2E + T2F;
T1D = FNMS(KP500000000, T12, TR);
T1G = KP866025403 * (T1E - T1F);
T1H = T1D - T1G;
T1T = T1D + T1G;
T2g = KP866025403 * (T1i - T1d);
T2j = FNMS(KP500000000, T2i, T2h);
T2k = T2g + T2j;
T2t = T2j - T2g;
{
E T2b, T2e, T1I, T1L;
T2b = KP866025403 * (T11 - TW);
T2e = FNMS(KP500000000, T2d, T2c);
T2f = T2b + T2e;
T2s = T2e - T2b;
T1I = FNMS(KP500000000, T1j, T18);
T1L = KP866025403 * (T1J - T1K);
T1M = T1I - T1L;
T1U = T1I + T1L;
}
}
}
{
E Ti, T21, Tz, T26, Tn, T1t, Ts, T1u, Tt, T22, TE, T1y, TJ, T1z, TK;
E T27;
{
E Tf, Th, Te, Tg;
Tf = ri[WS(rs, 3)];
Th = ii[WS(rs, 3)];
Te = W[4];
Tg = W[5];
Ti = FMA(Te, Tf, Tg * Th);
T21 = FNMS(Tg, Tf, Te * Th);
}
{
E Tw, Ty, Tv, Tx;
Tw = ri[WS(rs, 12)];
Ty = ii[WS(rs, 12)];
Tv = W[22];
Tx = W[23];
Tz = FMA(Tv, Tw, Tx * Ty);
T26 = FNMS(Tx, Tw, Tv * Ty);
}
{
E Tk, Tm, Tj, Tl;
Tk = ri[WS(rs, 8)];
Tm = ii[WS(rs, 8)];
Tj = W[14];
Tl = W[15];
Tn = FMA(Tj, Tk, Tl * Tm);
T1t = FNMS(Tl, Tk, Tj * Tm);
}
{
E Tp, Tr, To, Tq;
Tp = ri[WS(rs, 13)];
Tr = ii[WS(rs, 13)];
To = W[24];
Tq = W[25];
Ts = FMA(To, Tp, Tq * Tr);
T1u = FNMS(Tq, Tp, To * Tr);
}
Tt = Tn + Ts;
T22 = T1t + T1u;
{
E TB, TD, TA, TC;
TB = ri[WS(rs, 2)];
TD = ii[WS(rs, 2)];
TA = W[2];
TC = W[3];
TE = FMA(TA, TB, TC * TD);
T1y = FNMS(TC, TB, TA * TD);
}
{
E TG, TI, TF, TH;
TG = ri[WS(rs, 7)];
TI = ii[WS(rs, 7)];
TF = W[12];
TH = W[13];
TJ = FMA(TF, TG, TH * TI);
T1z = FNMS(TH, TG, TF * TI);
}
TK = TE + TJ;
T27 = T1y + T1z;
{
E T1s, T1v, T25, T28;
Tu = Ti + Tt;
TL = Tz + TK;
TM = Tu + TL;
T2H = T21 + T22;
T2I = T26 + T27;
T2N = T2H + T2I;
T1s = FNMS(KP500000000, Tt, Ti);
T1v = KP866025403 * (T1t - T1u);
T1w = T1s - T1v;
T1Q = T1s + T1v;
T25 = KP866025403 * (TJ - TE);
T28 = FNMS(KP500000000, T27, T26);
T29 = T25 + T28;
T2w = T28 - T25;
{
E T20, T23, T1x, T1A;
T20 = KP866025403 * (Ts - Tn);
T23 = FNMS(KP500000000, T22, T21);
T24 = T20 + T23;
T2v = T23 - T20;
T1x = FNMS(KP500000000, TK, Tz);
T1A = KP866025403 * (T1y - T1z);
T1B = T1x - T1A;
T1R = T1x + T1A;
}
}
}
{
E T2C, T1m, T2B, T2K, T2M, T2G, T2J, T2L, T2D;
T2C = KP559016994 * (TM - T1l);
T1m = TM + T1l;
T2B = FNMS(KP250000000, T1m, Td);
T2G = T2E - T2F;
T2J = T2H - T2I;
T2K = FNMS(KP587785252, T2J, KP951056516 * T2G);
T2M = FMA(KP951056516, T2J, KP587785252 * T2G);
ri[0] = Td + T1m;
T2L = T2C + T2B;
ri[WS(rs, 9)] = T2L - T2M;
ri[WS(rs, 6)] = T2L + T2M;
T2D = T2B - T2C;
ri[WS(rs, 12)] = T2D - T2K;
ri[WS(rs, 3)] = T2D + T2K;
}
{
E T2U, T2P, T2T, T2Y, T30, T2W, T2X, T2Z, T2V;
T2U = KP559016994 * (T2N - T2O);
T2P = T2N + T2O;
T2T = FNMS(KP250000000, T2P, T2S);
T2W = T13 - T1k;
T2X = Tu - TL;
T2Y = FNMS(KP587785252, T2X, KP951056516 * T2W);
T30 = FMA(KP951056516, T2X, KP587785252 * T2W);
ii[0] = T2P + T2S;
T2Z = T2U + T2T;
ii[WS(rs, 6)] = T2Z - T30;
ii[WS(rs, 9)] = T30 + T2Z;
T2V = T2T - T2U;
ii[WS(rs, 3)] = T2V - T2Y;
ii[WS(rs, 12)] = T2Y + T2V;
}
{
E T2y, T2A, T1r, T1O, T2p, T2q, T2z, T2r;
{
E T2u, T2x, T1C, T1N;
T2u = T2s - T2t;
T2x = T2v - T2w;
T2y = FNMS(KP587785252, T2x, KP951056516 * T2u);
T2A = FMA(KP951056516, T2x, KP587785252 * T2u);
T1r = T1n - T1q;
T1C = T1w + T1B;
T1N = T1H + T1M;
T1O = T1C + T1N;
T2p = FNMS(KP250000000, T1O, T1r);
T2q = KP559016994 * (T1C - T1N);
}
ri[WS(rs, 5)] = T1r + T1O;
T2z = T2q + T2p;
ri[WS(rs, 14)] = T2z - T2A;
ri[WS(rs, 11)] = T2z + T2A;
T2r = T2p - T2q;
ri[WS(rs, 2)] = T2r - T2y;
ri[WS(rs, 8)] = T2r + T2y;
}
{
E T3h, T3q, T3i, T3l, T3m, T3n, T3p, T3o;
{
E T3f, T3g, T3j, T3k;
T3f = T1H - T1M;
T3g = T1w - T1B;
T3h = FNMS(KP587785252, T3g, KP951056516 * T3f);
T3q = FMA(KP951056516, T3g, KP587785252 * T3f);
T3i = T35 - T34;
T3j = T2v + T2w;
T3k = T2s + T2t;
T3l = T3j + T3k;
T3m = FNMS(KP250000000, T3l, T3i);
T3n = KP559016994 * (T3j - T3k);
}
ii[WS(rs, 5)] = T3l + T3i;
T3p = T3n + T3m;
ii[WS(rs, 11)] = T3p - T3q;
ii[WS(rs, 14)] = T3q + T3p;
T3o = T3m - T3n;
ii[WS(rs, 2)] = T3h + T3o;
ii[WS(rs, 8)] = T3o - T3h;
}
{
E T3c, T3d, T36, T37, T33, T38, T3e, T39;
{
E T3a, T3b, T31, T32;
T3a = T1Q - T1R;
T3b = T1T - T1U;
T3c = FMA(KP951056516, T3a, KP587785252 * T3b);
T3d = FNMS(KP587785252, T3a, KP951056516 * T3b);
T36 = T34 + T35;
T31 = T24 + T29;
T32 = T2f + T2k;
T37 = T31 + T32;
T33 = KP559016994 * (T31 - T32);
T38 = FNMS(KP250000000, T37, T36);
}
ii[WS(rs, 10)] = T37 + T36;
T3e = T38 - T33;
ii[WS(rs, 7)] = T3d + T3e;
ii[WS(rs, 13)] = T3e - T3d;
T39 = T33 + T38;
ii[WS(rs, 1)] = T39 - T3c;
ii[WS(rs, 4)] = T3c + T39;
}
{
E T2m, T2o, T1P, T1W, T1X, T1Y, T2n, T1Z;
{
E T2a, T2l, T1S, T1V;
T2a = T24 - T29;
T2l = T2f - T2k;
T2m = FMA(KP951056516, T2a, KP587785252 * T2l);
T2o = FNMS(KP587785252, T2a, KP951056516 * T2l);
T1P = T1n + T1q;
T1S = T1Q + T1R;
T1V = T1T + T1U;
T1W = T1S + T1V;
T1X = KP559016994 * (T1S - T1V);
T1Y = FNMS(KP250000000, T1W, T1P);
}
ri[WS(rs, 10)] = T1P + T1W;
T2n = T1Y - T1X;
ri[WS(rs, 7)] = T2n - T2o;
ri[WS(rs, 13)] = T2n + T2o;
T1Z = T1X + T1Y;
ri[WS(rs, 4)] = T1Z - T2m;
ri[WS(rs, 1)] = T1Z + T2m;
}
}
}
}
static const tw_instr twinstr[] = {
{ TW_FULL, 0, 15 },
{ TW_NEXT, 1, 0 }
};
static const ct_desc desc = { 15, "t1_15", twinstr, &GENUS, { 128, 56, 56, 0 }, 0, 0, 0 };
void X(codelet_t1_15) (planner *p) {
X(kdft_dit_register) (p, t1_15, &desc);
}
#endif