furnace/src/engine/platform/pet.cpp

324 lines
8.3 KiB
C++

/**
* Furnace Tracker - multi-system chiptune tracker
* Copyright (C) 2021-2023 tildearrow and contributors
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/
#include "pet.h"
#include "../engine.h"
#include <math.h>
#define CHIP_DIVIDER 16
#define SAMP_DIVIDER 4
const char* regCheatSheet6522[]={
"T2L", "08",
"T2H", "09",
"SR", "0A",
"ACR", "0B",
"PCR", "0C",
NULL
};
const char** DivPlatformPET::getRegisterSheet() {
return regCheatSheet6522;
}
// high-level emulation of 6522 shift register and driver software for now
void DivPlatformPET::rWrite(unsigned int addr, unsigned char val) {
bool hwSROutput=((regPool[11]>>2)&7)==4;
switch (addr) {
case 9:
// simulate phase reset from switching between hw/sw shift registers
if ((regPool[9]==0)^(val==0)) {
chan[0].sreg=chan[0].wave;
}
break;
case 10:
chan[0].sreg=val;
if (hwSROutput) chan[0].cnt=2;
break;
}
regPool[addr]=val;
}
void DivPlatformPET::acquire(short** buf, size_t len) {
bool hwSROutput=((regPool[11]>>2)&7)==4;
if (chan[0].enable) {
int reload=regPool[8]*2+4;
if (!hwSROutput) {
reload+=regPool[9]*512;
}
for (size_t h=0; h<len; h++) {
if (SAMP_DIVIDER>chan[0].cnt) {
chan[0].out=(chan[0].sreg&1)*32767;
chan[0].sreg=(chan[0].sreg>>1)|((chan[0].sreg&1)<<7);
chan[0].cnt+=reload-SAMP_DIVIDER;
} else {
chan[0].cnt-=SAMP_DIVIDER;
}
buf[0][h]=chan[0].out;
oscBuf->data[oscBuf->needle++]=chan[0].out;
}
// emulate driver writes to PCR
if (!hwSROutput) regPool[12]=chan[0].out?0xe0:0xc0;
} else {
chan[0].out=0;
for (size_t h=0; h<len; h++) {
buf[0][h]=0;
oscBuf->data[oscBuf->needle++]=0;
}
}
}
void DivPlatformPET::writeOutVol() {
if (chan[0].active && !isMuted && chan[0].outVol>0) {
chan[0].enable=true;
rWrite(11,regPool[9]==0?16:0);
} else {
chan[0].enable=false;
rWrite(11,0);
}
}
void DivPlatformPET::tick(bool sysTick) {
chan[0].std.next();
if (chan[0].std.vol.had) {
chan[0].outVol=chan[0].std.vol.val&chan[0].vol;
writeOutVol();
}
if (NEW_ARP_STRAT) {
chan[0].handleArp();
} else if (chan[0].std.arp.had) {
if (!chan[0].inPorta) {
chan[0].baseFreq=NOTE_PERIODIC(parent->calcArp(chan[0].note,chan[0].std.arp.val));
}
chan[0].freqChanged=true;
}
if (chan[0].std.wave.had) {
if (chan[0].wave!=chan[0].std.wave.val) {
chan[0].wave=chan[0].std.wave.val;
rWrite(10,chan[0].wave);
}
}
if (chan[0].std.pitch.had) {
if (chan[0].std.pitch.mode) {
chan[0].pitch2+=chan[0].std.pitch.val;
CLAMP_VAR(chan[0].pitch2,-32768,32767);
} else {
chan[0].pitch2=chan[0].std.pitch.val;
}
chan[0].freqChanged=true;
}
if (chan[0].freqChanged || chan[0].keyOn || chan[0].keyOff) {
chan[0].freq=parent->calcFreq(chan[0].baseFreq,chan[0].pitch,chan[0].fixedArp?chan[0].baseNoteOverride:chan[0].arpOff,chan[0].fixedArp,true,0,chan[0].pitch2,chipClock,CHIP_DIVIDER)-2;
if (chan[0].freq>65535) chan[0].freq=65535;
if (chan[0].freq<0) chan[0].freq=0;
rWrite(8,chan[0].freq&0xff);
rWrite(9,chan[0].freq>>8);
if (chan[0].keyOn) {
if (!chan[0].std.vol.will) {
chan[0].outVol=chan[0].vol;
}
chan[0].keyOn=false;
}
if (chan[0].keyOff) {
chan[0].keyOff=false;
}
// update mode setting and channel enable
writeOutVol();
chan[0].freqChanged=false;
}
}
int DivPlatformPET::dispatch(DivCommand c) {
switch (c.cmd) {
case DIV_CMD_NOTE_ON: {
DivInstrument* ins=parent->getIns(chan[0].ins,DIV_INS_PET);
if (c.value!=DIV_NOTE_NULL) {
chan[0].baseFreq=NOTE_PERIODIC(c.value);
chan[0].freqChanged=true;
chan[0].note=c.value;
}
chan[0].active=true;
chan[0].keyOn=true;
chan[0].macroInit(ins);
if (!parent->song.brokenOutVol && !chan[0].std.vol.will) {
chan[0].outVol=chan[0].vol;
}
break;
}
case DIV_CMD_NOTE_OFF:
chan[0].active=false;
chan[0].keyOff=true;
chan[0].macroInit(NULL);
break;
case DIV_CMD_NOTE_OFF_ENV:
case DIV_CMD_ENV_RELEASE:
chan[0].std.release();
break;
case DIV_CMD_INSTRUMENT:
if (chan[0].ins!=c.value || c.value2==1) {
chan[0].ins=c.value;
}
break;
case DIV_CMD_VOLUME:
if (chan[0].vol!=c.value) {
chan[0].vol=c.value;
if (!chan[0].std.vol.had) {
chan[0].outVol=chan[0].vol;
writeOutVol();
}
}
break;
case DIV_CMD_GET_VOLUME:
return chan[0].vol;
break;
case DIV_CMD_PITCH:
chan[0].pitch=c.value;
chan[0].freqChanged=true;
break;
case DIV_CMD_WAVE:
chan[0].wave=c.value;
rWrite(10,chan[0].wave);
break;
case DIV_CMD_NOTE_PORTA: {
int destFreq=NOTE_PERIODIC(c.value2);
bool return2=false;
if (destFreq>chan[0].baseFreq) {
chan[0].baseFreq+=c.value;
if (chan[0].baseFreq>=destFreq) {
chan[0].baseFreq=destFreq;
return2=true;
}
} else {
chan[0].baseFreq-=c.value;
if (chan[0].baseFreq<=destFreq) {
chan[0].baseFreq=destFreq;
return2=true;
}
}
chan[0].freqChanged=true;
if (return2) {
chan[0].inPorta=false;
return 2;
}
break;
}
case DIV_CMD_LEGATO:
chan[0].baseFreq=NOTE_PERIODIC(c.value+((HACKY_LEGATO_MESS)?(chan[0].std.arp.val):(0)));
chan[0].freqChanged=true;
chan[0].note=c.value;
break;
case DIV_CMD_PRE_PORTA:
if (chan[0].active && c.value2) {
if (parent->song.resetMacroOnPorta) chan[0].macroInit(parent->getIns(chan[0].ins,DIV_INS_PET));
}
if (!chan[0].inPorta && c.value && !parent->song.brokenPortaArp && chan[0].std.arp.will && !NEW_ARP_STRAT) chan[0].baseFreq=NOTE_PERIODIC(chan[0].note);
chan[0].inPorta=c.value;
break;
case DIV_CMD_GET_VOLMAX:
return 1;
break;
case DIV_CMD_MACRO_OFF:
chan[c.chan].std.mask(c.value,true);
break;
case DIV_CMD_MACRO_ON:
chan[c.chan].std.mask(c.value,false);
break;
case DIV_ALWAYS_SET_VOLUME:
return 1;
break;
default:
break;
}
return 1;
}
void DivPlatformPET::muteChannel(int ch, bool mute) {
isMuted=mute;
writeOutVol();
}
void DivPlatformPET::forceIns() {
chan[0].insChanged=true;
chan[0].freqChanged=true;
writeOutVol();
}
void* DivPlatformPET::getChanState(int ch) {
return &chan;
}
DivMacroInt* DivPlatformPET::getChanMacroInt(int ch) {
return &chan[0].std;
}
DivDispatchOscBuffer* DivPlatformPET::getOscBuffer(int ch) {
return oscBuf;
}
unsigned char* DivPlatformPET::getRegisterPool() {
return regPool;
}
int DivPlatformPET::getRegisterPoolSize() {
return 16;
}
void DivPlatformPET::reset() {
memset(regPool,0,16);
chan[0]=Channel();
chan[0].std.setEngine(parent);
}
int DivPlatformPET::getOutputCount() {
return 1;
}
void DivPlatformPET::notifyInsDeletion(void* ins) {
chan[0].std.notifyInsDeletion((DivInstrument*)ins);
}
void DivPlatformPET::poke(unsigned int addr, unsigned short val) {
rWrite(addr,val);
}
void DivPlatformPET::poke(std::vector<DivRegWrite>& wlist) {
for (DivRegWrite& i: wlist) rWrite(i.addr,i.val);
}
int DivPlatformPET::init(DivEngine* p, int channels, int sugRate, const DivConfig& flags) {
parent=p;
dumpWrites=false;
skipRegisterWrites=false;
chipClock=1000000;
CHECK_CUSTOM_CLOCK;
rate=chipClock/SAMP_DIVIDER; // = 250000kHz
isMuted=false;
oscBuf=new DivDispatchOscBuffer;
oscBuf->rate=rate;
reset();
return 1;
}
void DivPlatformPET::quit() {
delete oscBuf;
}
DivPlatformPET::~DivPlatformPET() {
}