furnace/src/engine/platform/pcmdac.cpp

463 lines
14 KiB
C++

/**
* Furnace Tracker - multi-system chiptune tracker
* Copyright (C) 2021-2023 tildearrow and contributors
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/
#define _USE_MATH_DEFINES
#include "pcmdac.h"
#include "../engine.h"
#include "../filter.h"
#include <math.h>
// to ease the driver, freqency register is a 8.16 counter relative to output sample rate
#define CHIP_FREQBASE 65536
void DivPlatformPCMDAC::acquire(short** buf, size_t len) {
const int depthScale=(15-outDepth);
int output=0;
for (size_t h=0; h<len; h++) {
if (!chan[0].active || isMuted) {
buf[0][h]=0;
buf[1][h]=0;
oscBuf->data[oscBuf->needle++]=0;
continue;
}
if (chan[0].useWave || (chan[0].sample>=0 && chan[0].sample<parent->song.sampleLen)) {
chan[0].audPos+=((!chan[0].useWave) && chan[0].audDir)?-(chan[0].freq>>16):(chan[0].freq>>16);
chan[0].audSub+=(chan[0].freq&0xffff);
if (chan[0].audSub>=0x10000) {
chan[0].audSub-=0x10000;
chan[0].audPos+=((!chan[0].useWave) && chan[0].audDir)?-1:1;
}
if (chan[0].useWave) {
if (chan[0].audPos>=(int)chan[0].audLen) {
chan[0].audPos%=chan[0].audLen;
chan[0].audDir=false;
}
output=(chan[0].ws.output[chan[0].audPos]-0x80)<<8;
} else {
DivSample* s=parent->getSample(chan[0].sample);
if (s->samples>0) {
if (chan[0].audDir) {
if (s->isLoopable()) {
switch (s->loopMode) {
case DIV_SAMPLE_LOOP_FORWARD:
case DIV_SAMPLE_LOOP_PINGPONG:
if (chan[0].audPos<s->loopStart) {
chan[0].audPos=s->loopStart+(s->loopStart-chan[0].audPos);
chan[0].audDir=false;
}
break;
case DIV_SAMPLE_LOOP_BACKWARD:
if (chan[0].audPos<s->loopStart) {
chan[0].audPos=s->loopEnd-1-(s->loopStart-chan[0].audPos);
chan[0].audDir=true;
}
break;
default:
if (chan[0].audPos<0) {
chan[0].sample=-1;
}
break;
}
} else if (chan[0].audPos>=(int)s->samples) {
chan[0].sample=-1;
}
} else {
if (s->isLoopable()) {
switch (s->loopMode) {
case DIV_SAMPLE_LOOP_FORWARD:
if (chan[0].audPos>=s->loopEnd) {
chan[0].audPos=(chan[0].audPos+s->loopStart)-s->loopEnd;
chan[0].audDir=false;
}
break;
case DIV_SAMPLE_LOOP_BACKWARD:
case DIV_SAMPLE_LOOP_PINGPONG:
if (chan[0].audPos>=s->loopEnd) {
chan[0].audPos=s->loopEnd-1-(s->loopEnd-1-chan[0].audPos);
chan[0].audDir=true;
}
break;
default:
if (chan[0].audPos>=(int)s->samples) {
chan[0].sample=-1;
}
break;
}
} else if (chan[0].audPos>=(int)s->samples) {
chan[0].sample=-1;
}
}
if (chan[0].audPos>=0 && chan[0].audPos<(int)s->samples) {
int s_4=((chan[0].audPos-4)>=0)?s->data16[chan[0].audPos-4]:0;
int s_3=((chan[0].audPos-3)>=0)?s->data16[chan[0].audPos-3]:0;
int s_2=((chan[0].audPos-2)>=0)?s->data16[chan[0].audPos-2]:0;
int s_1=((chan[0].audPos-1)>=0)?s->data16[chan[0].audPos-1]:0;
int s0=s->data16[chan[0].audPos];
int s1=((chan[0].audPos+1)<(int)s->samples)?s->data16[chan[0].audPos+1]:0;
int s2=((chan[0].audPos+2)<(int)s->samples)?s->data16[chan[0].audPos+2]:0;
int s3=((chan[0].audPos+3)<(int)s->samples)?s->data16[chan[0].audPos+3]:0;
switch (interp) {
case 1: // linear
output=s0+((s1-s0)*(chan[0].audSub&0xffff)>>16);
break;
case 2: { // cubic
float* cubicTable=DivFilterTables::getCubicTable();
float* t=&cubicTable[((chan[0].audSub&0xffff)>>6)<<2];
float result=(float)s_1*t[0]+(float)s0*t[1]+(float)s1*t[2]+(float)s2*t[3];
if (result<-32768) result=-32768;
if (result>32767) result=32767;
output=result;
break;
}
case 3: { // sinc
float* sincTable=DivFilterTables::getSincTable8();
float* t1=&sincTable[(8191-((chan[0].audSub&0xffff)>>3))<<2];
float* t2=&sincTable[((chan[0].audSub&0xffff)>>3)<<2];
float result=(
s_4*t2[3]+
s_3*t2[2]+
s_2*t2[1]+
s_1*t2[0]+
s0*t1[0]+
s1*t1[1]+
s2*t1[2]+
s3*t1[3]
);
if (result<-32768) result=-32768;
if (result>32767) result=32767;
output=result;
break;
}
default: // none
output=s0;
break;
}
}
} else {
chan[0].sample=-1;
}
}
}
output=output*chan[0].vol*chan[0].envVol/16384;
oscBuf->data[oscBuf->needle++]=output;
if (outStereo) {
buf[0][h]=((output*chan[0].panL)>>(depthScale+8))<<depthScale;
buf[1][h]=((output*chan[0].panR)>>(depthScale+8))<<depthScale;
} else {
output=(output>>depthScale)<<depthScale;
buf[0][h]=output;
buf[1][h]=output;
}
}
}
void DivPlatformPCMDAC::tick(bool sysTick) {
chan[0].std.next();
if (chan[0].std.vol.had) {
chan[0].envVol=chan[0].std.vol.val;
}
if (NEW_ARP_STRAT) {
chan[0].handleArp();
} else if (chan[0].std.arp.had) {
if (!chan[0].inPorta) {
chan[0].baseFreq=NOTE_FREQUENCY(parent->calcArp(chan[0].note,chan[0].std.arp.val));
}
chan[0].freqChanged=true;
}
if (chan[0].useWave && chan[0].std.wave.had) {
if (chan[0].wave!=chan[0].std.wave.val || chan[0].ws.activeChanged()) {
chan[0].wave=chan[0].std.wave.val;
chan[0].ws.changeWave1(chan[0].wave);
if (!chan[0].keyOff) chan[0].keyOn=true;
}
}
if (chan[0].useWave && chan[0].active) {
chan[0].ws.tick();
}
if (chan[0].std.pitch.had) {
if (chan[0].std.pitch.mode) {
chan[0].pitch2+=chan[0].std.pitch.val;
CLAMP_VAR(chan[0].pitch2,-32768,32767);
} else {
chan[0].pitch2=chan[0].std.pitch.val;
}
chan[0].freqChanged=true;
}
if (chan[0].std.panL.had) {
int val=chan[0].std.panL.val&0x7f;
chan[0].panL=val*2;
}
if (chan[0].std.panR.had) {
int val=chan[0].std.panR.val&0x7f;
chan[0].panR=val*2;
}
if (chan[0].std.phaseReset.had) {
if (chan[0].std.phaseReset.val==1) {
chan[0].audDir=false;
chan[0].audPos=0;
}
}
if (chan[0].freqChanged || chan[0].keyOn || chan[0].keyOff) {
//DivInstrument* ins=parent->getIns(chan[0].ins,DIV_INS_AMIGA);
double off=1.0;
if (!chan[0].useWave && chan[0].sample>=0 && chan[0].sample<parent->song.sampleLen) {
DivSample* s=parent->getSample(chan[0].sample);
off=(s->centerRate>=1)?((double)s->centerRate/8363.0):1.0;
}
chan[0].freq=off*parent->calcFreq(chan[0].baseFreq,chan[0].pitch,chan[0].fixedArp?chan[0].baseNoteOverride:chan[0].arpOff,chan[0].fixedArp,false,2,chan[0].pitch2,chipClock,CHIP_FREQBASE);
if (chan[0].freq>16777215) chan[0].freq=16777215;
if (chan[0].keyOn) {
if (!chan[0].std.vol.had) {
chan[0].envVol=64;
}
chan[0].keyOn=false;
}
if (chan[0].keyOff) {
chan[0].keyOff=false;
}
chan[0].freqChanged=false;
}
}
int DivPlatformPCMDAC::dispatch(DivCommand c) {
switch (c.cmd) {
case DIV_CMD_NOTE_ON: {
DivInstrument* ins=parent->getIns(chan[0].ins,DIV_INS_AMIGA);
if (ins->amiga.useWave) {
chan[0].useWave=true;
chan[0].audLen=ins->amiga.waveLen+1;
if (chan[0].insChanged) {
if (chan[0].wave<0) {
chan[0].wave=0;
chan[0].ws.setWidth(chan[0].audLen);
chan[0].ws.changeWave1(chan[0].wave);
}
}
} else {
if (c.value!=DIV_NOTE_NULL) chan[0].sample=ins->amiga.getSample(c.value);
chan[0].useWave=false;
}
if (c.value!=DIV_NOTE_NULL) {
chan[0].baseFreq=round(NOTE_FREQUENCY(c.value));
}
if (chan[0].useWave || chan[0].sample<0 || chan[0].sample>=parent->song.sampleLen) {
chan[0].sample=-1;
}
if (chan[0].setPos) {
chan[0].setPos=false;
} else {
chan[0].audDir=false;
chan[0].audPos=0;
}
chan[0].audSub=0;
if (c.value!=DIV_NOTE_NULL) {
chan[0].freqChanged=true;
chan[0].note=c.value;
}
chan[0].active=true;
chan[0].keyOn=true;
chan[0].macroInit(ins);
if (!parent->song.brokenOutVol && !chan[0].std.vol.will) {
chan[0].envVol=64;
}
if (chan[0].useWave) {
chan[0].ws.init(ins,chan[0].audLen,255,chan[0].insChanged);
}
chan[0].insChanged=false;
break;
}
case DIV_CMD_NOTE_OFF:
chan[0].sample=-1;
chan[0].active=false;
chan[0].keyOff=true;
chan[0].macroInit(NULL);
break;
case DIV_CMD_NOTE_OFF_ENV:
case DIV_CMD_ENV_RELEASE:
chan[0].std.release();
break;
case DIV_CMD_INSTRUMENT:
if (chan[0].ins!=c.value || c.value2==1) {
chan[0].ins=c.value;
chan[0].insChanged=true;
}
break;
case DIV_CMD_VOLUME:
if (chan[0].vol!=c.value) {
chan[0].vol=c.value;
if (!chan[0].std.vol.has) {
chan[0].envVol=64;
}
}
break;
case DIV_CMD_GET_VOLUME:
return chan[0].vol;
break;
case DIV_CMD_PANNING:
chan[0].panL=c.value;
chan[0].panR=c.value2;
break;
case DIV_CMD_PITCH:
chan[0].pitch=c.value;
chan[0].freqChanged=true;
break;
case DIV_CMD_WAVE:
if (!chan[0].useWave) break;
chan[0].wave=c.value;
chan[0].keyOn=true;
chan[0].ws.changeWave1(chan[0].wave);
break;
case DIV_CMD_NOTE_PORTA: {
DivInstrument* ins=parent->getIns(chan[0].ins,DIV_INS_AMIGA);
chan[0].sample=ins->amiga.getSample(c.value2);
int destFreq=round(NOTE_FREQUENCY(c.value2));
bool return2=false;
if (destFreq>chan[0].baseFreq) {
chan[0].baseFreq+=c.value;
if (chan[0].baseFreq>=destFreq) {
chan[0].baseFreq=destFreq;
return2=true;
}
} else {
chan[0].baseFreq-=c.value;
if (chan[0].baseFreq<=destFreq) {
chan[0].baseFreq=destFreq;
return2=true;
}
}
chan[0].freqChanged=true;
if (return2) {
chan[0].inPorta=false;
return 2;
}
break;
}
case DIV_CMD_LEGATO: {
chan[0].baseFreq=round(NOTE_FREQUENCY(c.value+((HACKY_LEGATO_MESS)?(chan[0].std.arp.val):(0))));
chan[0].freqChanged=true;
chan[0].note=c.value;
break;
}
case DIV_CMD_PRE_PORTA:
if (chan[0].active && c.value2) {
if (parent->song.resetMacroOnPorta) chan[0].macroInit(parent->getIns(chan[0].ins,DIV_INS_AMIGA));
}
chan[0].inPorta=c.value;
break;
case DIV_CMD_SAMPLE_POS:
if (chan[0].useWave) break;
chan[0].audPos=c.value;
chan[0].setPos=true;
break;
case DIV_CMD_GET_VOLMAX:
return 255;
break;
case DIV_CMD_MACRO_OFF:
chan[c.chan].std.mask(c.value,true);
break;
case DIV_CMD_MACRO_ON:
chan[c.chan].std.mask(c.value,false);
break;
case DIV_ALWAYS_SET_VOLUME:
return 1;
break;
default:
break;
}
return 1;
}
void DivPlatformPCMDAC::muteChannel(int ch, bool mute) {
isMuted=mute;
}
void DivPlatformPCMDAC::forceIns() {
chan[0].insChanged=true;
chan[0].freqChanged=true;
chan[0].audDir=false;
chan[0].audPos=0;
chan[0].sample=-1;
}
void* DivPlatformPCMDAC::getChanState(int ch) {
return &chan;
}
DivDispatchOscBuffer* DivPlatformPCMDAC::getOscBuffer(int ch) {
return oscBuf;
}
void DivPlatformPCMDAC::reset() {
chan[0]=DivPlatformPCMDAC::Channel();
chan[0].std.setEngine(parent);
chan[0].ws.setEngine(parent);
chan[0].ws.init(NULL,32,255);
}
int DivPlatformPCMDAC::getOutputCount() {
return 2;
}
DivMacroInt* DivPlatformPCMDAC::getChanMacroInt(int ch) {
return &chan[0].std;
}
void DivPlatformPCMDAC::notifyInsChange(int ins) {
if (chan[0].ins==ins) {
chan[0].insChanged=true;
}
}
void DivPlatformPCMDAC::notifyWaveChange(int wave) {
if (chan[0].useWave && chan[0].wave==wave) {
chan[0].ws.changeWave1(wave);
}
}
void DivPlatformPCMDAC::notifyInsDeletion(void* ins) {
chan[0].std.notifyInsDeletion((DivInstrument*)ins);
}
void DivPlatformPCMDAC::setFlags(const DivConfig& flags) {
// default to 44100Hz 16-bit stereo
rate=flags.getInt("rate",44100);
// rate can't be too low or the resampler will break
if (rate<1000) rate=1000;
chipClock=rate;
outDepth=(flags.getInt("outDepth",15))&15;
outStereo=flags.getBool("stereo",true);
interp=flags.getInt("interpolation",0);
oscBuf->rate=rate;
}
int DivPlatformPCMDAC::init(DivEngine* p, int channels, int sugRate, const DivConfig& flags) {
parent=p;
dumpWrites=false;
skipRegisterWrites=false;
oscBuf=new DivDispatchOscBuffer;
isMuted=false;
setFlags(flags);
reset();
return 1;
}
void DivPlatformPCMDAC::quit() {
delete oscBuf;
}