furnace/extern/fftw/rdft/vrank3-transpose.c
2022-05-31 03:24:29 -05:00

777 lines
22 KiB
C

/*
* Copyright (c) 2003, 2007-14 Matteo Frigo
* Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
*/
/* rank-0, vector-rank-3, non-square in-place transposition
(see rank0.c for square transposition) */
#include "rdft/rdft.h"
#ifdef HAVE_STRING_H
#include <string.h> /* for memcpy() */
#endif
struct P_s;
typedef struct {
rdftapply apply;
int (*applicable)(const problem_rdft *p, planner *plnr,
int dim0, int dim1, int dim2, INT *nbuf);
int (*mkcldrn)(const problem_rdft *p, planner *plnr, struct P_s *ego);
const char *nam;
} transpose_adt;
typedef struct {
solver super;
const transpose_adt *adt;
} S;
typedef struct P_s {
plan_rdft super;
INT n, m, vl; /* transpose n x m matrix of vl-tuples */
INT nbuf; /* buffer size */
INT nd, md, d; /* transpose-gcd params */
INT nc, mc; /* transpose-cut params */
plan *cld1, *cld2, *cld3; /* children, null if unused */
const S *slv;
} P;
/*************************************************************************/
/* some utilities for the solvers */
static INT gcd(INT a, INT b)
{
INT r;
do {
r = a % b;
a = b;
b = r;
} while (r != 0);
return a;
}
/* whether we can transpose with one of our routines expecting
contiguous Ntuples */
static int Ntuple_transposable(const iodim *a, const iodim *b, INT vl, INT vs)
{
return (vs == 1 && b->is == vl && a->os == vl &&
((a->n == b->n && a->is == b->os
&& a->is >= b->n && a->is % vl == 0)
|| (a->is == b->n * vl && b->os == a->n * vl)));
}
/* check whether a and b correspond to the first and second dimensions
of a transpose of tuples with vector length = vl, stride = vs. */
static int transposable(const iodim *a, const iodim *b, INT vl, INT vs)
{
return ((a->n == b->n && a->os == b->is && a->is == b->os)
|| Ntuple_transposable(a, b, vl, vs));
}
static int pickdim(const tensor *s, int *pdim0, int *pdim1, int *pdim2)
{
int dim0, dim1;
for (dim0 = 0; dim0 < s->rnk; ++dim0)
for (dim1 = 0; dim1 < s->rnk; ++dim1) {
int dim2 = 3 - dim0 - dim1;
if (dim0 == dim1) continue;
if ((s->rnk == 2 || s->dims[dim2].is == s->dims[dim2].os)
&& transposable(s->dims + dim0, s->dims + dim1,
s->rnk == 2 ? (INT)1 : s->dims[dim2].n,
s->rnk == 2 ? (INT)1 : s->dims[dim2].is)) {
*pdim0 = dim0;
*pdim1 = dim1;
*pdim2 = dim2;
return 1;
}
}
return 0;
}
#define MINBUFDIV 9 /* min factor by which buffer is smaller than data */
#define MAXBUF 65536 /* maximum non-ugly buffer */
/* generic applicability function */
static int applicable(const solver *ego_, const problem *p_, planner *plnr,
int *dim0, int *dim1, int *dim2, INT *nbuf)
{
const S *ego = (const S *) ego_;
const problem_rdft *p = (const problem_rdft *) p_;
return (1
&& p->I == p->O
&& p->sz->rnk == 0
&& (p->vecsz->rnk == 2 || p->vecsz->rnk == 3)
&& pickdim(p->vecsz, dim0, dim1, dim2)
/* UGLY if vecloop in wrong order for locality */
&& (!NO_UGLYP(plnr) ||
p->vecsz->rnk == 2 ||
X(iabs)(p->vecsz->dims[*dim2].is)
< X(imax)(X(iabs)(p->vecsz->dims[*dim0].is),
X(iabs)(p->vecsz->dims[*dim0].os)))
/* SLOW if non-square */
&& (!NO_SLOWP(plnr)
|| p->vecsz->dims[*dim0].n == p->vecsz->dims[*dim1].n)
&& ego->adt->applicable(p, plnr, *dim0,*dim1,*dim2,nbuf)
/* buffers too big are UGLY */
&& ((!NO_UGLYP(plnr) && !CONSERVE_MEMORYP(plnr))
|| *nbuf <= MAXBUF
|| *nbuf * MINBUFDIV <= X(tensor_sz)(p->vecsz))
);
}
static void get_transpose_vec(const problem_rdft *p, int dim2, INT *vl,INT *vs)
{
if (p->vecsz->rnk == 2) {
*vl = 1; *vs = 1;
}
else {
*vl = p->vecsz->dims[dim2].n;
*vs = p->vecsz->dims[dim2].is; /* == os */
}
}
/*************************************************************************/
/* Cache-oblivious in-place transpose of non-square matrices, based
on transposes of blocks given by the gcd of the dimensions.
This algorithm is related to algorithm V5 from Murray Dow,
"Transposing a matrix on a vector computer," Parallel Computing 21
(12), 1997-2005 (1995), with the modification that we use
cache-oblivious recursive transpose subroutines (and we derived
it independently).
For a p x q matrix, this requires scratch space equal to the size
of the matrix divided by gcd(p,q). Alternatively, see also the
"cut" algorithm below, if |p-q| * gcd(p,q) < max(p,q). */
static void apply_gcd(const plan *ego_, R *I, R *O)
{
const P *ego = (const P *) ego_;
INT n = ego->nd, m = ego->md, d = ego->d;
INT vl = ego->vl;
R *buf = (R *)MALLOC(sizeof(R) * ego->nbuf, BUFFERS);
INT i, num_el = n*m*d*vl;
A(ego->n == n * d && ego->m == m * d);
UNUSED(O);
/* Transpose the matrix I in-place, where I is an (n*d) x (m*d) matrix
of vl-tuples and buf contains n*m*d*vl elements.
In general, to transpose a p x q matrix, you should call this
routine with d = gcd(p, q), n = p/d, and m = q/d. */
A(n > 0 && m > 0 && vl > 0);
A(d > 1);
/* treat as (d x n) x (d' x m) matrix. (d' = d) */
/* First, transpose d x (n x d') x m to d x (d' x n) x m,
using the buf matrix. This consists of d transposes
of contiguous n x d' matrices of m-tuples. */
if (n > 1) {
rdftapply cldapply = ((plan_rdft *) ego->cld1)->apply;
for (i = 0; i < d; ++i) {
cldapply(ego->cld1, I + i*num_el, buf);
memcpy(I + i*num_el, buf, num_el*sizeof(R));
}
}
/* Now, transpose (d x d') x (n x m) to (d' x d) x (n x m), which
is a square in-place transpose of n*m-tuples: */
{
rdftapply cldapply = ((plan_rdft *) ego->cld2)->apply;
cldapply(ego->cld2, I, I);
}
/* Finally, transpose d' x ((d x n) x m) to d' x (m x (d x n)),
using the buf matrix. This consists of d' transposes
of contiguous d*n x m matrices. */
if (m > 1) {
rdftapply cldapply = ((plan_rdft *) ego->cld3)->apply;
for (i = 0; i < d; ++i) {
cldapply(ego->cld3, I + i*num_el, buf);
memcpy(I + i*num_el, buf, num_el*sizeof(R));
}
}
X(ifree)(buf);
}
static int applicable_gcd(const problem_rdft *p, planner *plnr,
int dim0, int dim1, int dim2, INT *nbuf)
{
INT n = p->vecsz->dims[dim0].n;
INT m = p->vecsz->dims[dim1].n;
INT d, vl, vs;
get_transpose_vec(p, dim2, &vl, &vs);
d = gcd(n, m);
*nbuf = n * (m / d) * vl;
return (!NO_SLOWP(plnr) /* FIXME: not really SLOW for large 1d ffts */
&& n != m
&& d > 1
&& Ntuple_transposable(p->vecsz->dims + dim0,
p->vecsz->dims + dim1,
vl, vs));
}
static int mkcldrn_gcd(const problem_rdft *p, planner *plnr, P *ego)
{
INT n = ego->nd, m = ego->md, d = ego->d;
INT vl = ego->vl;
R *buf = (R *)MALLOC(sizeof(R) * ego->nbuf, BUFFERS);
INT num_el = n*m*d*vl;
if (n > 1) {
ego->cld1 = X(mkplan_d)(plnr,
X(mkproblem_rdft_0_d)(
X(mktensor_3d)(n, d*m*vl, m*vl,
d, m*vl, n*m*vl,
m*vl, 1, 1),
TAINT(p->I, num_el), buf));
if (!ego->cld1)
goto nada;
X(ops_madd)(d, &ego->cld1->ops, &ego->super.super.ops,
&ego->super.super.ops);
ego->super.super.ops.other += num_el * d * 2;
}
ego->cld2 = X(mkplan_d)(plnr,
X(mkproblem_rdft_0_d)(
X(mktensor_3d)(d, d*n*m*vl, n*m*vl,
d, n*m*vl, d*n*m*vl,
n*m*vl, 1, 1),
p->I, p->I));
if (!ego->cld2)
goto nada;
X(ops_add2)(&ego->cld2->ops, &ego->super.super.ops);
if (m > 1) {
ego->cld3 = X(mkplan_d)(plnr,
X(mkproblem_rdft_0_d)(
X(mktensor_3d)(d*n, m*vl, vl,
m, vl, d*n*vl,
vl, 1, 1),
TAINT(p->I, num_el), buf));
if (!ego->cld3)
goto nada;
X(ops_madd2)(d, &ego->cld3->ops, &ego->super.super.ops);
ego->super.super.ops.other += num_el * d * 2;
}
X(ifree)(buf);
return 1;
nada:
X(ifree)(buf);
return 0;
}
static const transpose_adt adt_gcd =
{
apply_gcd, applicable_gcd, mkcldrn_gcd,
"rdft-transpose-gcd"
};
/*************************************************************************/
/* Cache-oblivious in-place transpose of non-square n x m matrices,
based on transposing a sub-matrix first and then transposing the
remainder(s) with the help of a buffer. See also transpose-gcd,
above, if gcd(n,m) is large.
This algorithm is related to algorithm V3 from Murray Dow,
"Transposing a matrix on a vector computer," Parallel Computing 21
(12), 1997-2005 (1995), with the modifications that we use
cache-oblivious recursive transpose subroutines and we have the
generalization for large |n-m| below.
The best case, and the one described by Dow, is for |n-m| small, in
which case we transpose a square sub-matrix of size min(n,m),
handling the remainder via a buffer. This requires scratch space
equal to the size of the matrix times |n-m| / max(n,m).
As a generalization when |n-m| is not small, we also support cutting
*both* dimensions to an nc x mc matrix which is *not* necessarily
square, but has a large gcd (and can therefore use transpose-gcd).
*/
static void apply_cut(const plan *ego_, R *I, R *O)
{
const P *ego = (const P *) ego_;
INT n = ego->n, m = ego->m, nc = ego->nc, mc = ego->mc, vl = ego->vl;
INT i;
R *buf1 = (R *)MALLOC(sizeof(R) * ego->nbuf, BUFFERS);
UNUSED(O);
if (m > mc) {
((plan_rdft *) ego->cld1)->apply(ego->cld1, I + mc*vl, buf1);
for (i = 0; i < nc; ++i)
memmove(I + (mc*vl) * i, I + (m*vl) * i, sizeof(R) * (mc*vl));
}
((plan_rdft *) ego->cld2)->apply(ego->cld2, I, I); /* nc x mc transpose */
if (n > nc) {
R *buf2 = buf1 + (m-mc)*(nc*vl); /* FIXME: force better alignment? */
memcpy(buf2, I + nc*(m*vl), (n-nc)*(m*vl)*sizeof(R));
for (i = mc-1; i >= 0; --i)
memmove(I + (n*vl) * i, I + (nc*vl) * i, sizeof(R) * (n*vl));
((plan_rdft *) ego->cld3)->apply(ego->cld3, buf2, I + nc*vl);
}
if (m > mc) {
if (n > nc)
for (i = mc; i < m; ++i)
memcpy(I + i*(n*vl), buf1 + (i-mc)*(nc*vl),
(nc*vl)*sizeof(R));
else
memcpy(I + mc*(n*vl), buf1, (m-mc)*(n*vl)*sizeof(R));
}
X(ifree)(buf1);
}
/* only cut one dimension if the resulting buffer is small enough */
static int cut1(INT n, INT m, INT vl)
{
return (X(imax)(n,m) >= X(iabs)(n-m) * MINBUFDIV
|| X(imin)(n,m) * X(iabs)(n-m) * vl <= MAXBUF);
}
#define CUT_NSRCH 32 /* range of sizes to search for possible cuts */
static int applicable_cut(const problem_rdft *p, planner *plnr,
int dim0, int dim1, int dim2, INT *nbuf)
{
INT n = p->vecsz->dims[dim0].n;
INT m = p->vecsz->dims[dim1].n;
INT vl, vs;
get_transpose_vec(p, dim2, &vl, &vs);
*nbuf = 0; /* always small enough to be non-UGLY (?) */
A(MINBUFDIV <= CUT_NSRCH); /* assumed to avoid inf. loops below */
return (!NO_SLOWP(plnr) /* FIXME: not really SLOW for large 1d ffts? */
&& n != m
/* Don't call transpose-cut recursively (avoid inf. loops):
the non-square sub-transpose produced when !cut1
should always have gcd(n,m) >= min(CUT_NSRCH,n,m),
for which transpose-gcd is applicable */
&& (cut1(n, m, vl)
|| gcd(n, m) < X(imin)(MINBUFDIV, X(imin)(n,m)))
&& Ntuple_transposable(p->vecsz->dims + dim0,
p->vecsz->dims + dim1,
vl, vs));
}
static int mkcldrn_cut(const problem_rdft *p, planner *plnr, P *ego)
{
INT n = ego->n, m = ego->m, nc, mc;
INT vl = ego->vl;
R *buf;
/* pick the "best" cut */
if (cut1(n, m, vl)) {
nc = mc = X(imin)(n,m);
}
else {
INT dc, ns, ms;
dc = gcd(m, n); nc = n; mc = m;
/* search for cut with largest gcd
(TODO: different optimality criteria? different search range?) */
for (ms = m; ms > 0 && ms > m - CUT_NSRCH; --ms) {
for (ns = n; ns > 0 && ns > n - CUT_NSRCH; --ns) {
INT ds = gcd(ms, ns);
if (ds > dc) {
dc = ds; nc = ns; mc = ms;
if (dc == X(imin)(ns, ms))
break; /* cannot get larger than this */
}
}
if (dc == X(imin)(n, ms))
break; /* cannot get larger than this */
}
A(dc >= X(imin)(CUT_NSRCH, X(imin)(n, m)));
}
ego->nc = nc;
ego->mc = mc;
ego->nbuf = (m-mc)*(nc*vl) + (n-nc)*(m*vl);
buf = (R *)MALLOC(sizeof(R) * ego->nbuf, BUFFERS);
if (m > mc) {
ego->cld1 = X(mkplan_d)(plnr,
X(mkproblem_rdft_0_d)(
X(mktensor_3d)(nc, m*vl, vl,
m-mc, vl, nc*vl,
vl, 1, 1),
p->I + mc*vl, buf));
if (!ego->cld1)
goto nada;
X(ops_add2)(&ego->cld1->ops, &ego->super.super.ops);
}
ego->cld2 = X(mkplan_d)(plnr,
X(mkproblem_rdft_0_d)(
X(mktensor_3d)(nc, mc*vl, vl,
mc, vl, nc*vl,
vl, 1, 1),
p->I, p->I));
if (!ego->cld2)
goto nada;
X(ops_add2)(&ego->cld2->ops, &ego->super.super.ops);
if (n > nc) {
ego->cld3 = X(mkplan_d)(plnr,
X(mkproblem_rdft_0_d)(
X(mktensor_3d)(n-nc, m*vl, vl,
m, vl, n*vl,
vl, 1, 1),
buf + (m-mc)*(nc*vl), p->I + nc*vl));
if (!ego->cld3)
goto nada;
X(ops_add2)(&ego->cld3->ops, &ego->super.super.ops);
}
/* memcpy/memmove operations */
ego->super.super.ops.other += 2 * vl * (nc*mc * ((m > mc) + (n > nc))
+ (n-nc)*m + (m-mc)*nc);
X(ifree)(buf);
return 1;
nada:
X(ifree)(buf);
return 0;
}
static const transpose_adt adt_cut =
{
apply_cut, applicable_cut, mkcldrn_cut,
"rdft-transpose-cut"
};
/*************************************************************************/
/* In-place transpose routine from TOMS, which follows the cycles of
the permutation so that it writes to each location only once.
Because of cache-line and other issues, however, this routine is
typically much slower than transpose-gcd or transpose-cut, even
though the latter do some extra writes. On the other hand, if the
vector length is large then the TOMS routine is best.
The TOMS routine also has the advantage of requiring less buffer
space for the case of gcd(nx,ny) small. However, in this case it
has been superseded by the combination of the generalized
transpose-cut method with the transpose-gcd method, which can
always transpose with buffers a small fraction of the array size
regardless of gcd(nx,ny). */
/*
* TOMS Transpose. Algorithm 513 (Revised version of algorithm 380).
*
* These routines do in-place transposes of arrays.
*
* [ Cate, E.G. and Twigg, D.W., ACM Transactions on Mathematical Software,
* vol. 3, no. 1, 104-110 (1977) ]
*
* C version by Steven G. Johnson (February 1997).
*/
/*
* "a" is a 1D array of length ny*nx*N which constains the nx x ny
* matrix of N-tuples to be transposed. "a" is stored in row-major
* order (last index varies fastest). move is a 1D array of length
* move_size used to store information to speed up the process. The
* value move_size=(ny+nx)/2 is recommended. buf should be an array
* of length 2*N.
*
*/
static void transpose_toms513(R *a, INT nx, INT ny, INT N,
char *move, INT move_size, R *buf)
{
INT i, im, mn;
R *b, *c, *d;
INT ncount;
INT k;
/* check arguments and initialize: */
A(ny > 0 && nx > 0 && N > 0 && move_size > 0);
b = buf;
/* Cate & Twigg have a special case for nx == ny, but we don't
bother, since we already have special code for this case elsewhere. */
c = buf + N;
ncount = 2; /* always at least 2 fixed points */
k = (mn = ny * nx) - 1;
for (i = 0; i < move_size; ++i)
move[i] = 0;
if (ny >= 3 && nx >= 3)
ncount += gcd(ny - 1, nx - 1) - 1; /* # fixed points */
i = 1;
im = ny;
while (1) {
INT i1, i2, i1c, i2c;
INT kmi;
/** Rearrange the elements of a loop
and its companion loop: **/
i1 = i;
kmi = k - i;
i1c = kmi;
switch (N) {
case 1:
b[0] = a[i1];
c[0] = a[i1c];
break;
case 2:
b[0] = a[2*i1];
b[1] = a[2*i1+1];
c[0] = a[2*i1c];
c[1] = a[2*i1c+1];
break;
default:
memcpy(b, &a[N * i1], N * sizeof(R));
memcpy(c, &a[N * i1c], N * sizeof(R));
}
while (1) {
i2 = ny * i1 - k * (i1 / nx);
i2c = k - i2;
if (i1 < move_size)
move[i1] = 1;
if (i1c < move_size)
move[i1c] = 1;
ncount += 2;
if (i2 == i)
break;
if (i2 == kmi) {
d = b;
b = c;
c = d;
break;
}
switch (N) {
case 1:
a[i1] = a[i2];
a[i1c] = a[i2c];
break;
case 2:
a[2*i1] = a[2*i2];
a[2*i1+1] = a[2*i2+1];
a[2*i1c] = a[2*i2c];
a[2*i1c+1] = a[2*i2c+1];
break;
default:
memcpy(&a[N * i1], &a[N * i2],
N * sizeof(R));
memcpy(&a[N * i1c], &a[N * i2c],
N * sizeof(R));
}
i1 = i2;
i1c = i2c;
}
switch (N) {
case 1:
a[i1] = b[0];
a[i1c] = c[0];
break;
case 2:
a[2*i1] = b[0];
a[2*i1+1] = b[1];
a[2*i1c] = c[0];
a[2*i1c+1] = c[1];
break;
default:
memcpy(&a[N * i1], b, N * sizeof(R));
memcpy(&a[N * i1c], c, N * sizeof(R));
}
if (ncount >= mn)
break; /* we've moved all elements */
/** Search for loops to rearrange: **/
while (1) {
INT max = k - i;
++i;
A(i <= max);
im += ny;
if (im > k)
im -= k;
i2 = im;
if (i == i2)
continue;
if (i >= move_size) {
while (i2 > i && i2 < max) {
i1 = i2;
i2 = ny * i1 - k * (i1 / nx);
}
if (i2 == i)
break;
} else if (!move[i])
break;
}
}
}
static void apply_toms513(const plan *ego_, R *I, R *O)
{
const P *ego = (const P *) ego_;
INT n = ego->n, m = ego->m;
INT vl = ego->vl;
R *buf = (R *)MALLOC(sizeof(R) * ego->nbuf, BUFFERS);
UNUSED(O);
transpose_toms513(I, n, m, vl, (char *) (buf + 2*vl), (n+m)/2, buf);
X(ifree)(buf);
}
static int applicable_toms513(const problem_rdft *p, planner *plnr,
int dim0, int dim1, int dim2, INT *nbuf)
{
INT n = p->vecsz->dims[dim0].n;
INT m = p->vecsz->dims[dim1].n;
INT vl, vs;
get_transpose_vec(p, dim2, &vl, &vs);
*nbuf = 2*vl
+ ((n + m) / 2 * sizeof(char) + sizeof(R) - 1) / sizeof(R);
return (!NO_SLOWP(plnr)
&& (vl > 8 || !NO_UGLYP(plnr)) /* UGLY for small vl */
&& n != m
&& Ntuple_transposable(p->vecsz->dims + dim0,
p->vecsz->dims + dim1,
vl, vs));
}
static int mkcldrn_toms513(const problem_rdft *p, planner *plnr, P *ego)
{
UNUSED(p); UNUSED(plnr);
/* heuristic so that TOMS algorithm is last resort for small vl */
ego->super.super.ops.other += ego->n * ego->m * 2 * (ego->vl + 30);
return 1;
}
static const transpose_adt adt_toms513 =
{
apply_toms513, applicable_toms513, mkcldrn_toms513,
"rdft-transpose-toms513"
};
/*-----------------------------------------------------------------------*/
/*-----------------------------------------------------------------------*/
/* generic stuff: */
static void awake(plan *ego_, enum wakefulness wakefulness)
{
P *ego = (P *) ego_;
X(plan_awake)(ego->cld1, wakefulness);
X(plan_awake)(ego->cld2, wakefulness);
X(plan_awake)(ego->cld3, wakefulness);
}
static void print(const plan *ego_, printer *p)
{
const P *ego = (const P *) ego_;
p->print(p, "(%s-%Dx%D%v", ego->slv->adt->nam,
ego->n, ego->m, ego->vl);
if (ego->cld1) p->print(p, "%(%p%)", ego->cld1);
if (ego->cld2) p->print(p, "%(%p%)", ego->cld2);
if (ego->cld3) p->print(p, "%(%p%)", ego->cld3);
p->print(p, ")");
}
static void destroy(plan *ego_)
{
P *ego = (P *) ego_;
X(plan_destroy_internal)(ego->cld3);
X(plan_destroy_internal)(ego->cld2);
X(plan_destroy_internal)(ego->cld1);
}
static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr)
{
const S *ego = (const S *) ego_;
const problem_rdft *p;
int dim0, dim1, dim2;
INT nbuf, vs;
P *pln;
static const plan_adt padt = {
X(rdft_solve), awake, print, destroy
};
if (!applicable(ego_, p_, plnr, &dim0, &dim1, &dim2, &nbuf))
return (plan *) 0;
p = (const problem_rdft *) p_;
pln = MKPLAN_RDFT(P, &padt, ego->adt->apply);
pln->n = p->vecsz->dims[dim0].n;
pln->m = p->vecsz->dims[dim1].n;
get_transpose_vec(p, dim2, &pln->vl, &vs);
pln->nbuf = nbuf;
pln->d = gcd(pln->n, pln->m);
pln->nd = pln->n / pln->d;
pln->md = pln->m / pln->d;
pln->slv = ego;
X(ops_zero)(&pln->super.super.ops); /* mkcldrn is responsible for ops */
pln->cld1 = pln->cld2 = pln->cld3 = 0;
if (!ego->adt->mkcldrn(p, plnr, pln)) {
X(plan_destroy_internal)(&(pln->super.super));
return 0;
}
return &(pln->super.super);
}
static solver *mksolver(const transpose_adt *adt)
{
static const solver_adt sadt = { PROBLEM_RDFT, mkplan, 0 };
S *slv = MKSOLVER(S, &sadt);
slv->adt = adt;
return &(slv->super);
}
void X(rdft_vrank3_transpose_register)(planner *p)
{
unsigned i;
static const transpose_adt *const adts[] = {
&adt_gcd, &adt_cut,
&adt_toms513
};
for (i = 0; i < sizeof(adts) / sizeof(adts[0]); ++i)
REGISTER_SOLVER(p, mksolver(adts[i]));
}