mirror of
https://github.com/tildearrow/furnace.git
synced 2024-11-16 01:35:07 +00:00
54e93db207
not reliable yet
169 lines
4.2 KiB
C
169 lines
4.2 KiB
C
/*
|
|
* Copyright (c) 2003, 2007-14 Matteo Frigo
|
|
* Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
|
*
|
|
*/
|
|
|
|
#include "dft/dft.h"
|
|
|
|
typedef struct {
|
|
solver super;
|
|
} S;
|
|
|
|
typedef struct {
|
|
plan_dft super;
|
|
twid *td;
|
|
INT n, is, os;
|
|
} P;
|
|
|
|
|
|
static void cdot(INT n, const E *x, const R *w,
|
|
R *or0, R *oi0, R *or1, R *oi1)
|
|
{
|
|
INT i;
|
|
|
|
E rr = x[0], ri = 0, ir = x[1], ii = 0;
|
|
x += 2;
|
|
for (i = 1; i + i < n; ++i) {
|
|
rr += x[0] * w[0];
|
|
ir += x[1] * w[0];
|
|
ri += x[2] * w[1];
|
|
ii += x[3] * w[1];
|
|
x += 4; w += 2;
|
|
}
|
|
*or0 = rr + ii;
|
|
*oi0 = ir - ri;
|
|
*or1 = rr - ii;
|
|
*oi1 = ir + ri;
|
|
}
|
|
|
|
static void hartley(INT n, const R *xr, const R *xi, INT xs, E *o,
|
|
R *pr, R *pi)
|
|
{
|
|
INT i;
|
|
E sr, si;
|
|
o[0] = sr = xr[0]; o[1] = si = xi[0]; o += 2;
|
|
for (i = 1; i + i < n; ++i) {
|
|
sr += (o[0] = xr[i * xs] + xr[(n - i) * xs]);
|
|
si += (o[1] = xi[i * xs] + xi[(n - i) * xs]);
|
|
o[2] = xr[i * xs] - xr[(n - i) * xs];
|
|
o[3] = xi[i * xs] - xi[(n - i) * xs];
|
|
o += 4;
|
|
}
|
|
*pr = sr;
|
|
*pi = si;
|
|
}
|
|
|
|
static void apply(const plan *ego_, R *ri, R *ii, R *ro, R *io)
|
|
{
|
|
const P *ego = (const P *) ego_;
|
|
INT i;
|
|
INT n = ego->n, is = ego->is, os = ego->os;
|
|
const R *W = ego->td->W;
|
|
E *buf;
|
|
size_t bufsz = n * 2 * sizeof(E);
|
|
|
|
BUF_ALLOC(E *, buf, bufsz);
|
|
hartley(n, ri, ii, is, buf, ro, io);
|
|
|
|
for (i = 1; i + i < n; ++i) {
|
|
cdot(n, buf, W,
|
|
ro + i * os, io + i * os,
|
|
ro + (n - i) * os, io + (n - i) * os);
|
|
W += n - 1;
|
|
}
|
|
|
|
BUF_FREE(buf, bufsz);
|
|
}
|
|
|
|
static void awake(plan *ego_, enum wakefulness wakefulness)
|
|
{
|
|
P *ego = (P *) ego_;
|
|
static const tw_instr half_tw[] = {
|
|
{ TW_HALF, 1, 0 },
|
|
{ TW_NEXT, 1, 0 }
|
|
};
|
|
|
|
X(twiddle_awake)(wakefulness, &ego->td, half_tw, ego->n, ego->n,
|
|
(ego->n - 1) / 2);
|
|
}
|
|
|
|
static void print(const plan *ego_, printer *p)
|
|
{
|
|
const P *ego = (const P *) ego_;
|
|
|
|
p->print(p, "(dft-generic-%D)", ego->n);
|
|
}
|
|
|
|
static int applicable(const solver *ego, const problem *p_,
|
|
const planner *plnr)
|
|
{
|
|
const problem_dft *p = (const problem_dft *) p_;
|
|
UNUSED(ego);
|
|
|
|
return (1
|
|
&& p->sz->rnk == 1
|
|
&& p->vecsz->rnk == 0
|
|
&& (p->sz->dims[0].n % 2) == 1
|
|
&& CIMPLIES(NO_LARGE_GENERICP(plnr), p->sz->dims[0].n < GENERIC_MIN_BAD)
|
|
&& CIMPLIES(NO_SLOWP(plnr), p->sz->dims[0].n > GENERIC_MAX_SLOW)
|
|
&& X(is_prime)(p->sz->dims[0].n)
|
|
);
|
|
}
|
|
|
|
static plan *mkplan(const solver *ego, const problem *p_, planner *plnr)
|
|
{
|
|
const problem_dft *p;
|
|
P *pln;
|
|
INT n;
|
|
|
|
static const plan_adt padt = {
|
|
X(dft_solve), awake, print, X(plan_null_destroy)
|
|
};
|
|
|
|
if (!applicable(ego, p_, plnr))
|
|
return (plan *)0;
|
|
|
|
pln = MKPLAN_DFT(P, &padt, apply);
|
|
|
|
p = (const problem_dft *) p_;
|
|
pln->n = n = p->sz->dims[0].n;
|
|
pln->is = p->sz->dims[0].is;
|
|
pln->os = p->sz->dims[0].os;
|
|
pln->td = 0;
|
|
|
|
pln->super.super.ops.add = (n-1) * 5;
|
|
pln->super.super.ops.mul = 0;
|
|
pln->super.super.ops.fma = (n-1) * (n-1) ;
|
|
#if 0 /* these are nice pipelined sequential loads and should cost nothing */
|
|
pln->super.super.ops.other = (n-1)*(4 + 1 + 2 * (n-1)); /* approximate */
|
|
#endif
|
|
|
|
return &(pln->super.super);
|
|
}
|
|
|
|
static solver *mksolver(void)
|
|
{
|
|
static const solver_adt sadt = { PROBLEM_DFT, mkplan, 0 };
|
|
S *slv = MKSOLVER(S, &sadt);
|
|
return &(slv->super);
|
|
}
|
|
|
|
void X(dft_generic_register)(planner *p)
|
|
{
|
|
REGISTER_SOLVER(p, mksolver());
|
|
}
|