mirror of
https://github.com/tildearrow/furnace.git
synced 2024-12-05 02:37:26 +00:00
54e93db207
not reliable yet
295 lines
11 KiB
C
295 lines
11 KiB
C
/*
|
|
* Copyright (c) 2003, 2007-14 Matteo Frigo
|
|
* Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
|
*
|
|
*/
|
|
|
|
/* This file was automatically generated --- DO NOT EDIT */
|
|
/* Generated on Tue Sep 14 10:47:22 EDT 2021 */
|
|
|
|
#include "rdft/codelet-rdft.h"
|
|
|
|
#if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
|
|
|
|
/* Generated by: ../../../genfft/gen_hc2cdft_c.native -fma -simd -compact -variables 4 -pipeline-latency 8 -trivial-stores -variables 32 -no-generate-bytw -n 10 -dif -sign 1 -name hc2cbdftv_10 -include rdft/simd/hc2cbv.h */
|
|
|
|
/*
|
|
* This function contains 61 FP additions, 50 FP multiplications,
|
|
* (or, 33 additions, 22 multiplications, 28 fused multiply/add),
|
|
* 76 stack variables, 4 constants, and 20 memory accesses
|
|
*/
|
|
#include "rdft/simd/hc2cbv.h"
|
|
|
|
static void hc2cbdftv_10(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
|
|
{
|
|
DVK(KP559016994, +0.559016994374947424102293417182819058860154590);
|
|
DVK(KP618033988, +0.618033988749894848204586834365638117720309180);
|
|
DVK(KP951056516, +0.951056516295153572116439333379382143405698634);
|
|
DVK(KP250000000, +0.250000000000000000000000000000000000000000000);
|
|
{
|
|
INT m;
|
|
for (m = mb, W = W + ((mb - 1) * ((TWVL / VL) * 18)); m < me; m = m + VL, Rp = Rp + (VL * ms), Ip = Ip + (VL * ms), Rm = Rm - (VL * ms), Im = Im - (VL * ms), W = W + (TWVL * 18), MAKE_VOLATILE_STRIDE(40, rs)) {
|
|
V T4, Ts, Tl, TB, Tj, Tk, Tz, TA, TF, TV, Tp, TL, Te, Tw, Th;
|
|
V Tx, Ti, Ty, T7, Tt, Ta, Tu, Tb, Tv, T2, T3, Tc, Td, Tf, Tg;
|
|
V T5, T6, T8, T9, TD, TE, Tn, To;
|
|
T2 = LD(&(Rp[0]), ms, &(Rp[0]));
|
|
T3 = LD(&(Rm[WS(rs, 4)]), -ms, &(Rm[0]));
|
|
T4 = VFNMSCONJ(T3, T2);
|
|
Ts = VFMACONJ(T3, T2);
|
|
Tc = LD(&(Rp[WS(rs, 4)]), ms, &(Rp[0]));
|
|
Td = LD(&(Rm[0]), -ms, &(Rm[0]));
|
|
Te = VFNMSCONJ(Td, Tc);
|
|
Tw = VFMACONJ(Td, Tc);
|
|
Tf = LD(&(Rp[WS(rs, 1)]), ms, &(Rp[WS(rs, 1)]));
|
|
Tg = LD(&(Rm[WS(rs, 3)]), -ms, &(Rm[WS(rs, 1)]));
|
|
Th = VFMSCONJ(Tg, Tf);
|
|
Tx = VFMACONJ(Tg, Tf);
|
|
Ti = VADD(Te, Th);
|
|
Ty = VADD(Tw, Tx);
|
|
T5 = LD(&(Rp[WS(rs, 2)]), ms, &(Rp[0]));
|
|
T6 = LD(&(Rm[WS(rs, 2)]), -ms, &(Rm[0]));
|
|
T7 = VFNMSCONJ(T6, T5);
|
|
Tt = VFMACONJ(T6, T5);
|
|
T8 = LD(&(Rp[WS(rs, 3)]), ms, &(Rp[WS(rs, 1)]));
|
|
T9 = LD(&(Rm[WS(rs, 1)]), -ms, &(Rm[WS(rs, 1)]));
|
|
Ta = VFMSCONJ(T9, T8);
|
|
Tu = VFMACONJ(T9, T8);
|
|
Tb = VADD(T7, Ta);
|
|
Tv = VADD(Tt, Tu);
|
|
Tl = VSUB(Tb, Ti);
|
|
TB = VSUB(Tv, Ty);
|
|
Tj = VADD(Tb, Ti);
|
|
Tk = VFNMS(LDK(KP250000000), Tj, T4);
|
|
Tz = VADD(Tv, Ty);
|
|
TA = VFNMS(LDK(KP250000000), Tz, Ts);
|
|
TD = VSUB(Tw, Tx);
|
|
TE = VSUB(Tt, Tu);
|
|
TF = VMUL(LDK(KP951056516), VFNMS(LDK(KP618033988), TE, TD));
|
|
TV = VMUL(LDK(KP951056516), VFMA(LDK(KP618033988), TD, TE));
|
|
Tn = VSUB(Te, Th);
|
|
To = VSUB(T7, Ta);
|
|
Tp = VMUL(LDK(KP951056516), VFNMS(LDK(KP618033988), To, Tn));
|
|
TL = VMUL(LDK(KP951056516), VFMA(LDK(KP618033988), Tn, To));
|
|
{
|
|
V T17, TS, Tq, T10, TW, T12, TM, T16, TG, TO, TR, Tm, T1, TZ, TU;
|
|
V TT, T11, TK, TJ, T15, TC, Tr, TN, TH, TP, T19, TI, T18, T14, TY;
|
|
V TQ, T13, TX;
|
|
T17 = VADD(Ts, Tz);
|
|
TR = LDW(&(W[TWVL * 8]));
|
|
TS = VZMULI(TR, VADD(T4, Tj));
|
|
Tm = VFNMS(LDK(KP559016994), Tl, Tk);
|
|
T1 = LDW(&(W[TWVL * 4]));
|
|
Tq = VZMULI(T1, VFMAI(Tp, Tm));
|
|
TZ = LDW(&(W[TWVL * 12]));
|
|
T10 = VZMULI(TZ, VFNMSI(Tp, Tm));
|
|
TU = VFMA(LDK(KP559016994), TB, TA);
|
|
TT = LDW(&(W[TWVL * 6]));
|
|
TW = VZMUL(TT, VFNMSI(TV, TU));
|
|
T11 = LDW(&(W[TWVL * 10]));
|
|
T12 = VZMUL(T11, VFMAI(TV, TU));
|
|
TK = VFMA(LDK(KP559016994), Tl, Tk);
|
|
TJ = LDW(&(W[TWVL * 16]));
|
|
TM = VZMULI(TJ, VFNMSI(TL, TK));
|
|
T15 = LDW(&(W[0]));
|
|
T16 = VZMULI(T15, VFMAI(TL, TK));
|
|
TC = VFNMS(LDK(KP559016994), TB, TA);
|
|
Tr = LDW(&(W[TWVL * 2]));
|
|
TG = VZMUL(Tr, VFNMSI(TF, TC));
|
|
TN = LDW(&(W[TWVL * 14]));
|
|
TO = VZMUL(TN, VFMAI(TF, TC));
|
|
TH = VADD(Tq, TG);
|
|
ST(&(Rp[WS(rs, 1)]), TH, ms, &(Rp[WS(rs, 1)]));
|
|
TP = VADD(TM, TO);
|
|
ST(&(Rp[WS(rs, 4)]), TP, ms, &(Rp[0]));
|
|
T19 = VCONJ(VSUB(T17, T16));
|
|
ST(&(Rm[0]), T19, -ms, &(Rm[0]));
|
|
TI = VCONJ(VSUB(TG, Tq));
|
|
ST(&(Rm[WS(rs, 1)]), TI, -ms, &(Rm[WS(rs, 1)]));
|
|
T18 = VADD(T16, T17);
|
|
ST(&(Rp[0]), T18, ms, &(Rp[0]));
|
|
T14 = VCONJ(VSUB(T12, T10));
|
|
ST(&(Rm[WS(rs, 3)]), T14, -ms, &(Rm[WS(rs, 1)]));
|
|
TY = VCONJ(VSUB(TW, TS));
|
|
ST(&(Rm[WS(rs, 2)]), TY, -ms, &(Rm[0]));
|
|
TQ = VCONJ(VSUB(TO, TM));
|
|
ST(&(Rm[WS(rs, 4)]), TQ, -ms, &(Rm[0]));
|
|
T13 = VADD(T10, T12);
|
|
ST(&(Rp[WS(rs, 3)]), T13, ms, &(Rp[WS(rs, 1)]));
|
|
TX = VADD(TS, TW);
|
|
ST(&(Rp[WS(rs, 2)]), TX, ms, &(Rp[0]));
|
|
}
|
|
}
|
|
}
|
|
VLEAVE();
|
|
}
|
|
|
|
static const tw_instr twinstr[] = {
|
|
VTW(1, 1),
|
|
VTW(1, 2),
|
|
VTW(1, 3),
|
|
VTW(1, 4),
|
|
VTW(1, 5),
|
|
VTW(1, 6),
|
|
VTW(1, 7),
|
|
VTW(1, 8),
|
|
VTW(1, 9),
|
|
{ TW_NEXT, VL, 0 }
|
|
};
|
|
|
|
static const hc2c_desc desc = { 10, XSIMD_STRING("hc2cbdftv_10"), twinstr, &GENUS, { 33, 22, 28, 0 } };
|
|
|
|
void XSIMD(codelet_hc2cbdftv_10) (planner *p) {
|
|
X(khc2c_register) (p, hc2cbdftv_10, &desc, HC2C_VIA_DFT);
|
|
}
|
|
#else
|
|
|
|
/* Generated by: ../../../genfft/gen_hc2cdft_c.native -simd -compact -variables 4 -pipeline-latency 8 -trivial-stores -variables 32 -no-generate-bytw -n 10 -dif -sign 1 -name hc2cbdftv_10 -include rdft/simd/hc2cbv.h */
|
|
|
|
/*
|
|
* This function contains 61 FP additions, 30 FP multiplications,
|
|
* (or, 55 additions, 24 multiplications, 6 fused multiply/add),
|
|
* 81 stack variables, 4 constants, and 20 memory accesses
|
|
*/
|
|
#include "rdft/simd/hc2cbv.h"
|
|
|
|
static void hc2cbdftv_10(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
|
|
{
|
|
DVK(KP250000000, +0.250000000000000000000000000000000000000000000);
|
|
DVK(KP951056516, +0.951056516295153572116439333379382143405698634);
|
|
DVK(KP587785252, +0.587785252292473129168705954639072768597652438);
|
|
DVK(KP559016994, +0.559016994374947424102293417182819058860154590);
|
|
{
|
|
INT m;
|
|
for (m = mb, W = W + ((mb - 1) * ((TWVL / VL) * 18)); m < me; m = m + VL, Rp = Rp + (VL * ms), Ip = Ip + (VL * ms), Rm = Rm - (VL * ms), Im = Im - (VL * ms), W = W + (TWVL * 18), MAKE_VOLATILE_STRIDE(40, rs)) {
|
|
V T5, TE, Ts, Tt, TC, Tz, TH, TJ, To, Tq, T2, T4, T3, T9, Tx;
|
|
V Tm, TB, Td, Ty, Ti, TA, T6, T8, T7, Tl, Tk, Tj, Tc, Tb, Ta;
|
|
V Tf, Th, Tg, TF, TG, Te, Tn;
|
|
T2 = LD(&(Rp[0]), ms, &(Rp[0]));
|
|
T3 = LD(&(Rm[WS(rs, 4)]), -ms, &(Rm[0]));
|
|
T4 = VCONJ(T3);
|
|
T5 = VSUB(T2, T4);
|
|
TE = VADD(T2, T4);
|
|
T6 = LD(&(Rp[WS(rs, 2)]), ms, &(Rp[0]));
|
|
T7 = LD(&(Rm[WS(rs, 2)]), -ms, &(Rm[0]));
|
|
T8 = VCONJ(T7);
|
|
T9 = VSUB(T6, T8);
|
|
Tx = VADD(T6, T8);
|
|
Tl = LD(&(Rp[WS(rs, 1)]), ms, &(Rp[WS(rs, 1)]));
|
|
Tj = LD(&(Rm[WS(rs, 3)]), -ms, &(Rm[WS(rs, 1)]));
|
|
Tk = VCONJ(Tj);
|
|
Tm = VSUB(Tk, Tl);
|
|
TB = VADD(Tk, Tl);
|
|
Tc = LD(&(Rp[WS(rs, 3)]), ms, &(Rp[WS(rs, 1)]));
|
|
Ta = LD(&(Rm[WS(rs, 1)]), -ms, &(Rm[WS(rs, 1)]));
|
|
Tb = VCONJ(Ta);
|
|
Td = VSUB(Tb, Tc);
|
|
Ty = VADD(Tb, Tc);
|
|
Tf = LD(&(Rp[WS(rs, 4)]), ms, &(Rp[0]));
|
|
Tg = LD(&(Rm[0]), -ms, &(Rm[0]));
|
|
Th = VCONJ(Tg);
|
|
Ti = VSUB(Tf, Th);
|
|
TA = VADD(Tf, Th);
|
|
Ts = VSUB(T9, Td);
|
|
Tt = VSUB(Ti, Tm);
|
|
TC = VSUB(TA, TB);
|
|
Tz = VSUB(Tx, Ty);
|
|
TF = VADD(Tx, Ty);
|
|
TG = VADD(TA, TB);
|
|
TH = VADD(TF, TG);
|
|
TJ = VMUL(LDK(KP559016994), VSUB(TF, TG));
|
|
Te = VADD(T9, Td);
|
|
Tn = VADD(Ti, Tm);
|
|
To = VADD(Te, Tn);
|
|
Tq = VMUL(LDK(KP559016994), VSUB(Te, Tn));
|
|
{
|
|
V T1c, TX, Tv, T1b, TR, T15, TL, T17, TT, T11, TW, Tu, TQ, Tr, TP;
|
|
V Tp, T1, T1a, TO, T14, TD, T10, TK, TZ, TI, Tw, T16, TS, TY, TM;
|
|
V TU, T1e, TN, T1d, T19, T13, TV, T18, T12;
|
|
T1c = VADD(TE, TH);
|
|
TW = LDW(&(W[TWVL * 8]));
|
|
TX = VZMULI(TW, VADD(T5, To));
|
|
Tu = VBYI(VFNMS(LDK(KP951056516), Tt, VMUL(LDK(KP587785252), Ts)));
|
|
TQ = VBYI(VFMA(LDK(KP951056516), Ts, VMUL(LDK(KP587785252), Tt)));
|
|
Tp = VFNMS(LDK(KP250000000), To, T5);
|
|
Tr = VSUB(Tp, Tq);
|
|
TP = VADD(Tq, Tp);
|
|
T1 = LDW(&(W[TWVL * 4]));
|
|
Tv = VZMULI(T1, VSUB(Tr, Tu));
|
|
T1a = LDW(&(W[0]));
|
|
T1b = VZMULI(T1a, VADD(TQ, TP));
|
|
TO = LDW(&(W[TWVL * 16]));
|
|
TR = VZMULI(TO, VSUB(TP, TQ));
|
|
T14 = LDW(&(W[TWVL * 12]));
|
|
T15 = VZMULI(T14, VADD(Tu, Tr));
|
|
TD = VBYI(VFNMS(LDK(KP951056516), TC, VMUL(LDK(KP587785252), Tz)));
|
|
T10 = VBYI(VFMA(LDK(KP951056516), Tz, VMUL(LDK(KP587785252), TC)));
|
|
TI = VFNMS(LDK(KP250000000), TH, TE);
|
|
TK = VSUB(TI, TJ);
|
|
TZ = VADD(TJ, TI);
|
|
Tw = LDW(&(W[TWVL * 2]));
|
|
TL = VZMUL(Tw, VADD(TD, TK));
|
|
T16 = LDW(&(W[TWVL * 10]));
|
|
T17 = VZMUL(T16, VADD(T10, TZ));
|
|
TS = LDW(&(W[TWVL * 14]));
|
|
TT = VZMUL(TS, VSUB(TK, TD));
|
|
TY = LDW(&(W[TWVL * 6]));
|
|
T11 = VZMUL(TY, VSUB(TZ, T10));
|
|
TM = VADD(Tv, TL);
|
|
ST(&(Rp[WS(rs, 1)]), TM, ms, &(Rp[WS(rs, 1)]));
|
|
TU = VADD(TR, TT);
|
|
ST(&(Rp[WS(rs, 4)]), TU, ms, &(Rp[0]));
|
|
T1e = VCONJ(VSUB(T1c, T1b));
|
|
ST(&(Rm[0]), T1e, -ms, &(Rm[0]));
|
|
TN = VCONJ(VSUB(TL, Tv));
|
|
ST(&(Rm[WS(rs, 1)]), TN, -ms, &(Rm[WS(rs, 1)]));
|
|
T1d = VADD(T1b, T1c);
|
|
ST(&(Rp[0]), T1d, ms, &(Rp[0]));
|
|
T19 = VCONJ(VSUB(T17, T15));
|
|
ST(&(Rm[WS(rs, 3)]), T19, -ms, &(Rm[WS(rs, 1)]));
|
|
T13 = VCONJ(VSUB(T11, TX));
|
|
ST(&(Rm[WS(rs, 2)]), T13, -ms, &(Rm[0]));
|
|
TV = VCONJ(VSUB(TT, TR));
|
|
ST(&(Rm[WS(rs, 4)]), TV, -ms, &(Rm[0]));
|
|
T18 = VADD(T15, T17);
|
|
ST(&(Rp[WS(rs, 3)]), T18, ms, &(Rp[WS(rs, 1)]));
|
|
T12 = VADD(TX, T11);
|
|
ST(&(Rp[WS(rs, 2)]), T12, ms, &(Rp[0]));
|
|
}
|
|
}
|
|
}
|
|
VLEAVE();
|
|
}
|
|
|
|
static const tw_instr twinstr[] = {
|
|
VTW(1, 1),
|
|
VTW(1, 2),
|
|
VTW(1, 3),
|
|
VTW(1, 4),
|
|
VTW(1, 5),
|
|
VTW(1, 6),
|
|
VTW(1, 7),
|
|
VTW(1, 8),
|
|
VTW(1, 9),
|
|
{ TW_NEXT, VL, 0 }
|
|
};
|
|
|
|
static const hc2c_desc desc = { 10, XSIMD_STRING("hc2cbdftv_10"), twinstr, &GENUS, { 55, 24, 6, 0 } };
|
|
|
|
void XSIMD(codelet_hc2cbdftv_10) (planner *p) {
|
|
X(khc2c_register) (p, hc2cbdftv_10, &desc, HC2C_VIA_DFT);
|
|
}
|
|
#endif
|