mirror of
https://github.com/tildearrow/furnace.git
synced 2024-12-04 18:27:25 +00:00
54e93db207
not reliable yet
296 lines
11 KiB
C
296 lines
11 KiB
C
/*
|
|
* Copyright (c) 2003, 2007-14 Matteo Frigo
|
|
* Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
|
*
|
|
*/
|
|
|
|
/* This file was automatically generated --- DO NOT EDIT */
|
|
/* Generated on Tue Sep 14 10:45:28 EDT 2021 */
|
|
|
|
#include "dft/codelet-dft.h"
|
|
|
|
#if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
|
|
|
|
/* Generated by: ../../../genfft/gen_twiddle_c.native -fma -simd -compact -variables 4 -pipeline-latency 8 -n 9 -name t1fv_9 -include dft/simd/t1f.h */
|
|
|
|
/*
|
|
* This function contains 54 FP additions, 54 FP multiplications,
|
|
* (or, 20 additions, 20 multiplications, 34 fused multiply/add),
|
|
* 50 stack variables, 19 constants, and 18 memory accesses
|
|
*/
|
|
#include "dft/simd/t1f.h"
|
|
|
|
static void t1fv_9(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
|
|
{
|
|
DVK(KP939692620, +0.939692620785908384054109277324731469936208134);
|
|
DVK(KP852868531, +0.852868531952443209628250963940074071936020296);
|
|
DVK(KP666666666, +0.666666666666666666666666666666666666666666667);
|
|
DVK(KP879385241, +0.879385241571816768108218554649462939872416269);
|
|
DVK(KP984807753, +0.984807753012208059366743024589523013670643252);
|
|
DVK(KP898197570, +0.898197570222573798468955502359086394667167570);
|
|
DVK(KP673648177, +0.673648177666930348851716626769314796000375677);
|
|
DVK(KP826351822, +0.826351822333069651148283373230685203999624323);
|
|
DVK(KP420276625, +0.420276625461206169731530603237061658838781920);
|
|
DVK(KP907603734, +0.907603734547952313649323976213898122064543220);
|
|
DVK(KP347296355, +0.347296355333860697703433253538629592000751354);
|
|
DVK(KP866025403, +0.866025403784438646763723170752936183471402627);
|
|
DVK(KP203604859, +0.203604859554852403062088995281827210665664861);
|
|
DVK(KP726681596, +0.726681596905677465811651808188092531873167623);
|
|
DVK(KP152703644, +0.152703644666139302296566746461370407999248646);
|
|
DVK(KP968908795, +0.968908795874236621082202410917456709164223497);
|
|
DVK(KP439692620, +0.439692620785908384054109277324731469936208134);
|
|
DVK(KP586256827, +0.586256827714544512072145703099641959914944179);
|
|
DVK(KP500000000, +0.500000000000000000000000000000000000000000000);
|
|
{
|
|
INT m;
|
|
R *x;
|
|
x = ri;
|
|
for (m = mb, W = W + (mb * ((TWVL / VL) * 16)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 16), MAKE_VOLATILE_STRIDE(9, rs)) {
|
|
V T1, T6, TD, Tf, Tn, Ts, Tv, Tt, Tu, Tw, TA, TK, TJ, TG, TF;
|
|
T1 = LD(&(x[0]), ms, &(x[0]));
|
|
{
|
|
V T3, T5, T2, T4;
|
|
T2 = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)]));
|
|
T3 = BYTWJ(&(W[TWVL * 4]), T2);
|
|
T4 = LD(&(x[WS(rs, 6)]), ms, &(x[0]));
|
|
T5 = BYTWJ(&(W[TWVL * 10]), T4);
|
|
T6 = VADD(T3, T5);
|
|
TD = VSUB(T5, T3);
|
|
}
|
|
{
|
|
V T9, Th, Tb, Td, Te, Tj, Tl, Tm, T8, Tg;
|
|
T8 = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)]));
|
|
T9 = BYTWJ(&(W[0]), T8);
|
|
Tg = LD(&(x[WS(rs, 2)]), ms, &(x[0]));
|
|
Th = BYTWJ(&(W[TWVL * 2]), Tg);
|
|
{
|
|
V Ta, Tc, Ti, Tk;
|
|
Ta = LD(&(x[WS(rs, 4)]), ms, &(x[0]));
|
|
Tb = BYTWJ(&(W[TWVL * 6]), Ta);
|
|
Tc = LD(&(x[WS(rs, 7)]), ms, &(x[WS(rs, 1)]));
|
|
Td = BYTWJ(&(W[TWVL * 12]), Tc);
|
|
Te = VADD(Tb, Td);
|
|
Ti = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)]));
|
|
Tj = BYTWJ(&(W[TWVL * 8]), Ti);
|
|
Tk = LD(&(x[WS(rs, 8)]), ms, &(x[0]));
|
|
Tl = BYTWJ(&(W[TWVL * 14]), Tk);
|
|
Tm = VADD(Tj, Tl);
|
|
}
|
|
Tf = VADD(T9, Te);
|
|
Tn = VADD(Th, Tm);
|
|
Ts = VFNMS(LDK(KP500000000), Tm, Th);
|
|
Tv = VFNMS(LDK(KP500000000), Te, T9);
|
|
Tt = VSUB(Tb, Td);
|
|
Tu = VSUB(Tl, Tj);
|
|
Tw = VFNMS(LDK(KP586256827), Tv, Tu);
|
|
TA = VFNMS(LDK(KP439692620), Tt, Ts);
|
|
TK = VFMA(LDK(KP968908795), Tv, Tt);
|
|
TJ = VFNMS(LDK(KP152703644), Tu, Ts);
|
|
TG = VFNMS(LDK(KP726681596), Tt, Tv);
|
|
TF = VFMA(LDK(KP203604859), Ts, Tu);
|
|
}
|
|
{
|
|
V Tq, T7, To, Tp;
|
|
Tq = VMUL(LDK(KP866025403), VSUB(Tn, Tf));
|
|
T7 = VADD(T1, T6);
|
|
To = VADD(Tf, Tn);
|
|
Tp = VFNMS(LDK(KP500000000), To, T7);
|
|
ST(&(x[0]), VADD(T7, To), ms, &(x[0]));
|
|
ST(&(x[WS(rs, 3)]), VFMAI(Tq, Tp), ms, &(x[WS(rs, 1)]));
|
|
ST(&(x[WS(rs, 6)]), VFNMSI(Tq, Tp), ms, &(x[0]));
|
|
}
|
|
{
|
|
V Ty, TC, TM, TR, Tr, TI, TO, Tx, TB;
|
|
Tx = VFNMS(LDK(KP347296355), Tw, Tt);
|
|
Ty = VFNMS(LDK(KP907603734), Tx, Ts);
|
|
TB = VFNMS(LDK(KP420276625), TA, Tu);
|
|
TC = VFNMS(LDK(KP826351822), TB, Tv);
|
|
{
|
|
V TL, TQ, TN, TH;
|
|
TL = VFMA(LDK(KP673648177), TK, TJ);
|
|
TQ = VFNMS(LDK(KP898197570), TG, TF);
|
|
TM = VMUL(LDK(KP984807753), VFNMS(LDK(KP879385241), TD, TL));
|
|
TR = VFMA(LDK(KP666666666), TL, TQ);
|
|
Tr = VFNMS(LDK(KP500000000), T6, T1);
|
|
TN = VFNMS(LDK(KP673648177), TK, TJ);
|
|
TH = VFMA(LDK(KP898197570), TG, TF);
|
|
TI = VFMA(LDK(KP852868531), TH, Tr);
|
|
TO = VFNMS(LDK(KP500000000), TH, TN);
|
|
}
|
|
ST(&(x[WS(rs, 1)]), VFNMSI(TM, TI), ms, &(x[WS(rs, 1)]));
|
|
ST(&(x[WS(rs, 8)]), VFMAI(TM, TI), ms, &(x[0]));
|
|
{
|
|
V Tz, TE, TP, TS;
|
|
Tz = VFNMS(LDK(KP939692620), Ty, Tr);
|
|
TE = VMUL(LDK(KP984807753), VFMA(LDK(KP879385241), TD, TC));
|
|
ST(&(x[WS(rs, 2)]), VFNMSI(TE, Tz), ms, &(x[0]));
|
|
ST(&(x[WS(rs, 7)]), VFMAI(TE, Tz), ms, &(x[WS(rs, 1)]));
|
|
TP = VFMA(LDK(KP852868531), TO, Tr);
|
|
TS = VMUL(LDK(KP866025403), VFMA(LDK(KP852868531), TR, TD));
|
|
ST(&(x[WS(rs, 5)]), VFNMSI(TS, TP), ms, &(x[WS(rs, 1)]));
|
|
ST(&(x[WS(rs, 4)]), VFMAI(TS, TP), ms, &(x[0]));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
VLEAVE();
|
|
}
|
|
|
|
static const tw_instr twinstr[] = {
|
|
VTW(0, 1),
|
|
VTW(0, 2),
|
|
VTW(0, 3),
|
|
VTW(0, 4),
|
|
VTW(0, 5),
|
|
VTW(0, 6),
|
|
VTW(0, 7),
|
|
VTW(0, 8),
|
|
{ TW_NEXT, VL, 0 }
|
|
};
|
|
|
|
static const ct_desc desc = { 9, XSIMD_STRING("t1fv_9"), twinstr, &GENUS, { 20, 20, 34, 0 }, 0, 0, 0 };
|
|
|
|
void XSIMD(codelet_t1fv_9) (planner *p) {
|
|
X(kdft_dit_register) (p, t1fv_9, &desc);
|
|
}
|
|
#else
|
|
|
|
/* Generated by: ../../../genfft/gen_twiddle_c.native -simd -compact -variables 4 -pipeline-latency 8 -n 9 -name t1fv_9 -include dft/simd/t1f.h */
|
|
|
|
/*
|
|
* This function contains 54 FP additions, 42 FP multiplications,
|
|
* (or, 38 additions, 26 multiplications, 16 fused multiply/add),
|
|
* 38 stack variables, 14 constants, and 18 memory accesses
|
|
*/
|
|
#include "dft/simd/t1f.h"
|
|
|
|
static void t1fv_9(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
|
|
{
|
|
DVK(KP939692620, +0.939692620785908384054109277324731469936208134);
|
|
DVK(KP296198132, +0.296198132726023843175338011893050938967728390);
|
|
DVK(KP852868531, +0.852868531952443209628250963940074071936020296);
|
|
DVK(KP173648177, +0.173648177666930348851716626769314796000375677);
|
|
DVK(KP556670399, +0.556670399226419366452912952047023132968291906);
|
|
DVK(KP766044443, +0.766044443118978035202392650555416673935832457);
|
|
DVK(KP642787609, +0.642787609686539326322643409907263432907559884);
|
|
DVK(KP663413948, +0.663413948168938396205421319635891297216863310);
|
|
DVK(KP984807753, +0.984807753012208059366743024589523013670643252);
|
|
DVK(KP150383733, +0.150383733180435296639271897612501926072238258);
|
|
DVK(KP342020143, +0.342020143325668733044099614682259580763083368);
|
|
DVK(KP813797681, +0.813797681349373692844693217248393223289101568);
|
|
DVK(KP500000000, +0.500000000000000000000000000000000000000000000);
|
|
DVK(KP866025403, +0.866025403784438646763723170752936183471402627);
|
|
{
|
|
INT m;
|
|
R *x;
|
|
x = ri;
|
|
for (m = mb, W = W + (mb * ((TWVL / VL) * 16)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 16), MAKE_VOLATILE_STRIDE(9, rs)) {
|
|
V T1, T6, TA, Tt, Tf, Ts, Tw, Tn, Tv;
|
|
T1 = LD(&(x[0]), ms, &(x[0]));
|
|
{
|
|
V T3, T5, T2, T4;
|
|
T2 = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)]));
|
|
T3 = BYTWJ(&(W[TWVL * 4]), T2);
|
|
T4 = LD(&(x[WS(rs, 6)]), ms, &(x[0]));
|
|
T5 = BYTWJ(&(W[TWVL * 10]), T4);
|
|
T6 = VADD(T3, T5);
|
|
TA = VMUL(LDK(KP866025403), VSUB(T5, T3));
|
|
}
|
|
{
|
|
V T9, Td, Tb, T8, Tc, Ta, Te;
|
|
T8 = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)]));
|
|
T9 = BYTWJ(&(W[0]), T8);
|
|
Tc = LD(&(x[WS(rs, 7)]), ms, &(x[WS(rs, 1)]));
|
|
Td = BYTWJ(&(W[TWVL * 12]), Tc);
|
|
Ta = LD(&(x[WS(rs, 4)]), ms, &(x[0]));
|
|
Tb = BYTWJ(&(W[TWVL * 6]), Ta);
|
|
Tt = VSUB(Td, Tb);
|
|
Te = VADD(Tb, Td);
|
|
Tf = VADD(T9, Te);
|
|
Ts = VFNMS(LDK(KP500000000), Te, T9);
|
|
}
|
|
{
|
|
V Th, Tl, Tj, Tg, Tk, Ti, Tm;
|
|
Tg = LD(&(x[WS(rs, 2)]), ms, &(x[0]));
|
|
Th = BYTWJ(&(W[TWVL * 2]), Tg);
|
|
Tk = LD(&(x[WS(rs, 8)]), ms, &(x[0]));
|
|
Tl = BYTWJ(&(W[TWVL * 14]), Tk);
|
|
Ti = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)]));
|
|
Tj = BYTWJ(&(W[TWVL * 8]), Ti);
|
|
Tw = VSUB(Tl, Tj);
|
|
Tm = VADD(Tj, Tl);
|
|
Tn = VADD(Th, Tm);
|
|
Tv = VFNMS(LDK(KP500000000), Tm, Th);
|
|
}
|
|
{
|
|
V Tq, T7, To, Tp;
|
|
Tq = VBYI(VMUL(LDK(KP866025403), VSUB(Tn, Tf)));
|
|
T7 = VADD(T1, T6);
|
|
To = VADD(Tf, Tn);
|
|
Tp = VFNMS(LDK(KP500000000), To, T7);
|
|
ST(&(x[0]), VADD(T7, To), ms, &(x[0]));
|
|
ST(&(x[WS(rs, 3)]), VADD(Tp, Tq), ms, &(x[WS(rs, 1)]));
|
|
ST(&(x[WS(rs, 6)]), VSUB(Tp, Tq), ms, &(x[0]));
|
|
}
|
|
{
|
|
V TI, TB, TC, TD, Tu, Tx, Ty, Tr, TH;
|
|
TI = VBYI(VSUB(VFNMS(LDK(KP342020143), Tv, VFNMS(LDK(KP150383733), Tt, VFNMS(LDK(KP984807753), Ts, VMUL(LDK(KP813797681), Tw)))), TA));
|
|
TB = VFNMS(LDK(KP642787609), Ts, VMUL(LDK(KP663413948), Tt));
|
|
TC = VFNMS(LDK(KP984807753), Tv, VMUL(LDK(KP150383733), Tw));
|
|
TD = VADD(TB, TC);
|
|
Tu = VFMA(LDK(KP766044443), Ts, VMUL(LDK(KP556670399), Tt));
|
|
Tx = VFMA(LDK(KP173648177), Tv, VMUL(LDK(KP852868531), Tw));
|
|
Ty = VADD(Tu, Tx);
|
|
Tr = VFNMS(LDK(KP500000000), T6, T1);
|
|
TH = VFMA(LDK(KP173648177), Ts, VFNMS(LDK(KP296198132), Tw, VFNMS(LDK(KP939692620), Tv, VFNMS(LDK(KP852868531), Tt, Tr))));
|
|
ST(&(x[WS(rs, 7)]), VSUB(TH, TI), ms, &(x[WS(rs, 1)]));
|
|
ST(&(x[WS(rs, 2)]), VADD(TH, TI), ms, &(x[0]));
|
|
{
|
|
V Tz, TE, TF, TG;
|
|
Tz = VADD(Tr, Ty);
|
|
TE = VBYI(VADD(TA, TD));
|
|
ST(&(x[WS(rs, 8)]), VSUB(Tz, TE), ms, &(x[0]));
|
|
ST(&(x[WS(rs, 1)]), VADD(TE, Tz), ms, &(x[WS(rs, 1)]));
|
|
TF = VFMA(LDK(KP866025403), VSUB(TB, TC), VFNMS(LDK(KP500000000), Ty, Tr));
|
|
TG = VBYI(VADD(TA, VFNMS(LDK(KP500000000), TD, VMUL(LDK(KP866025403), VSUB(Tx, Tu)))));
|
|
ST(&(x[WS(rs, 5)]), VSUB(TF, TG), ms, &(x[WS(rs, 1)]));
|
|
ST(&(x[WS(rs, 4)]), VADD(TF, TG), ms, &(x[0]));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
VLEAVE();
|
|
}
|
|
|
|
static const tw_instr twinstr[] = {
|
|
VTW(0, 1),
|
|
VTW(0, 2),
|
|
VTW(0, 3),
|
|
VTW(0, 4),
|
|
VTW(0, 5),
|
|
VTW(0, 6),
|
|
VTW(0, 7),
|
|
VTW(0, 8),
|
|
{ TW_NEXT, VL, 0 }
|
|
};
|
|
|
|
static const ct_desc desc = { 9, XSIMD_STRING("t1fv_9"), twinstr, &GENUS, { 38, 26, 16, 0 }, 0, 0, 0 };
|
|
|
|
void XSIMD(codelet_t1fv_9) (planner *p) {
|
|
X(kdft_dit_register) (p, t1fv_9, &desc);
|
|
}
|
|
#endif
|