furnace/extern/fftw/dft/simd/common/t3bv_10.c
2022-05-31 03:24:29 -05:00

290 lines
9.6 KiB
C

/*
* Copyright (c) 2003, 2007-14 Matteo Frigo
* Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
*/
/* This file was automatically generated --- DO NOT EDIT */
/* Generated on Tue Sep 14 10:45:57 EDT 2021 */
#include "dft/codelet-dft.h"
#if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
/* Generated by: ../../../genfft/gen_twiddle_c.native -fma -simd -compact -variables 4 -pipeline-latency 8 -twiddle-log3 -precompute-twiddles -no-generate-bytw -n 10 -name t3bv_10 -include dft/simd/t3b.h -sign 1 */
/*
* This function contains 57 FP additions, 52 FP multiplications,
* (or, 39 additions, 34 multiplications, 18 fused multiply/add),
* 41 stack variables, 4 constants, and 20 memory accesses
*/
#include "dft/simd/t3b.h"
static void t3bv_10(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
{
DVK(KP559016994, +0.559016994374947424102293417182819058860154590);
DVK(KP618033988, +0.618033988749894848204586834365638117720309180);
DVK(KP951056516, +0.951056516295153572116439333379382143405698634);
DVK(KP250000000, +0.250000000000000000000000000000000000000000000);
{
INT m;
R *x;
x = ii;
for (m = mb, W = W + (mb * ((TWVL / VL) * 6)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 6), MAKE_VOLATILE_STRIDE(10, rs)) {
V T2, T3, T4, Ta, T5, T6, Tt, Td, Th;
T2 = LDW(&(W[0]));
T3 = LDW(&(W[TWVL * 2]));
T4 = VZMUL(T2, T3);
Ta = VZMULJ(T2, T3);
T5 = LDW(&(W[TWVL * 4]));
T6 = VZMULJ(T4, T5);
Tt = VZMULJ(T3, T5);
Td = VZMULJ(Ta, T5);
Th = VZMULJ(T2, T5);
{
V T9, TJ, Ts, Ty, Tz, TN, TO, TP, Tg, Tm, Tn, TK, TL, TM, T1;
V T8, T7;
T1 = LD(&(x[0]), ms, &(x[0]));
T7 = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)]));
T8 = VZMUL(T6, T7);
T9 = VSUB(T1, T8);
TJ = VADD(T1, T8);
{
V Tp, Tx, Tr, Tv;
{
V To, Tw, Tq, Tu;
To = LD(&(x[WS(rs, 4)]), ms, &(x[0]));
Tp = VZMUL(T4, To);
Tw = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)]));
Tx = VZMUL(T2, Tw);
Tq = LD(&(x[WS(rs, 9)]), ms, &(x[WS(rs, 1)]));
Tr = VZMUL(T5, Tq);
Tu = LD(&(x[WS(rs, 6)]), ms, &(x[0]));
Tv = VZMUL(Tt, Tu);
}
Ts = VSUB(Tp, Tr);
Ty = VSUB(Tv, Tx);
Tz = VADD(Ts, Ty);
TN = VADD(Tp, Tr);
TO = VADD(Tv, Tx);
TP = VADD(TN, TO);
}
{
V Tc, Tl, Tf, Tj;
{
V Tb, Tk, Te, Ti;
Tb = LD(&(x[WS(rs, 2)]), ms, &(x[0]));
Tc = VZMUL(Ta, Tb);
Tk = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)]));
Tl = VZMUL(T3, Tk);
Te = LD(&(x[WS(rs, 7)]), ms, &(x[WS(rs, 1)]));
Tf = VZMUL(Td, Te);
Ti = LD(&(x[WS(rs, 8)]), ms, &(x[0]));
Tj = VZMUL(Th, Ti);
}
Tg = VSUB(Tc, Tf);
Tm = VSUB(Tj, Tl);
Tn = VADD(Tg, Tm);
TK = VADD(Tc, Tf);
TL = VADD(Tj, Tl);
TM = VADD(TK, TL);
}
{
V TC, TA, TB, TG, TI, TE, TF, TH, TD;
TC = VSUB(Tn, Tz);
TA = VADD(Tn, Tz);
TB = VFNMS(LDK(KP250000000), TA, T9);
TE = VSUB(Tg, Tm);
TF = VSUB(Ts, Ty);
TG = VMUL(LDK(KP951056516), VFMA(LDK(KP618033988), TF, TE));
TI = VMUL(LDK(KP951056516), VFNMS(LDK(KP618033988), TE, TF));
ST(&(x[WS(rs, 5)]), VADD(T9, TA), ms, &(x[WS(rs, 1)]));
TH = VFNMS(LDK(KP559016994), TC, TB);
ST(&(x[WS(rs, 3)]), VFMAI(TI, TH), ms, &(x[WS(rs, 1)]));
ST(&(x[WS(rs, 7)]), VFNMSI(TI, TH), ms, &(x[WS(rs, 1)]));
TD = VFMA(LDK(KP559016994), TC, TB);
ST(&(x[WS(rs, 1)]), VFMAI(TG, TD), ms, &(x[WS(rs, 1)]));
ST(&(x[WS(rs, 9)]), VFNMSI(TG, TD), ms, &(x[WS(rs, 1)]));
}
{
V TS, TQ, TR, TW, TY, TU, TV, TX, TT;
TS = VSUB(TM, TP);
TQ = VADD(TM, TP);
TR = VFNMS(LDK(KP250000000), TQ, TJ);
TU = VSUB(TN, TO);
TV = VSUB(TK, TL);
TW = VMUL(LDK(KP951056516), VFNMS(LDK(KP618033988), TV, TU));
TY = VMUL(LDK(KP951056516), VFMA(LDK(KP618033988), TU, TV));
ST(&(x[0]), VADD(TJ, TQ), ms, &(x[0]));
TX = VFMA(LDK(KP559016994), TS, TR);
ST(&(x[WS(rs, 4)]), VFNMSI(TY, TX), ms, &(x[0]));
ST(&(x[WS(rs, 6)]), VFMAI(TY, TX), ms, &(x[0]));
TT = VFNMS(LDK(KP559016994), TS, TR);
ST(&(x[WS(rs, 2)]), VFNMSI(TW, TT), ms, &(x[0]));
ST(&(x[WS(rs, 8)]), VFMAI(TW, TT), ms, &(x[0]));
}
}
}
}
VLEAVE();
}
static const tw_instr twinstr[] = {
VTW(0, 1),
VTW(0, 3),
VTW(0, 9),
{ TW_NEXT, VL, 0 }
};
static const ct_desc desc = { 10, XSIMD_STRING("t3bv_10"), twinstr, &GENUS, { 39, 34, 18, 0 }, 0, 0, 0 };
void XSIMD(codelet_t3bv_10) (planner *p) {
X(kdft_dit_register) (p, t3bv_10, &desc);
}
#else
/* Generated by: ../../../genfft/gen_twiddle_c.native -simd -compact -variables 4 -pipeline-latency 8 -twiddle-log3 -precompute-twiddles -no-generate-bytw -n 10 -name t3bv_10 -include dft/simd/t3b.h -sign 1 */
/*
* This function contains 57 FP additions, 42 FP multiplications,
* (or, 51 additions, 36 multiplications, 6 fused multiply/add),
* 41 stack variables, 4 constants, and 20 memory accesses
*/
#include "dft/simd/t3b.h"
static void t3bv_10(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
{
DVK(KP587785252, +0.587785252292473129168705954639072768597652438);
DVK(KP951056516, +0.951056516295153572116439333379382143405698634);
DVK(KP250000000, +0.250000000000000000000000000000000000000000000);
DVK(KP559016994, +0.559016994374947424102293417182819058860154590);
{
INT m;
R *x;
x = ii;
for (m = mb, W = W + (mb * ((TWVL / VL) * 6)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 6), MAKE_VOLATILE_STRIDE(10, rs)) {
V T1, T2, T3, Ti, T6, T7, TA, Tb, To;
T1 = LDW(&(W[0]));
T2 = LDW(&(W[TWVL * 2]));
T3 = VZMULJ(T1, T2);
Ti = VZMUL(T1, T2);
T6 = LDW(&(W[TWVL * 4]));
T7 = VZMULJ(T3, T6);
TA = VZMULJ(Ti, T6);
Tb = VZMULJ(T1, T6);
To = VZMULJ(T2, T6);
{
V TD, TQ, Tn, Tt, Tx, TM, TN, TS, Ta, Tg, Tw, TJ, TK, TR, Tz;
V TC, TB;
Tz = LD(&(x[0]), ms, &(x[0]));
TB = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)]));
TC = VZMUL(TA, TB);
TD = VSUB(Tz, TC);
TQ = VADD(Tz, TC);
{
V Tk, Ts, Tm, Tq;
{
V Tj, Tr, Tl, Tp;
Tj = LD(&(x[WS(rs, 4)]), ms, &(x[0]));
Tk = VZMUL(Ti, Tj);
Tr = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)]));
Ts = VZMUL(T1, Tr);
Tl = LD(&(x[WS(rs, 9)]), ms, &(x[WS(rs, 1)]));
Tm = VZMUL(T6, Tl);
Tp = LD(&(x[WS(rs, 6)]), ms, &(x[0]));
Tq = VZMUL(To, Tp);
}
Tn = VSUB(Tk, Tm);
Tt = VSUB(Tq, Ts);
Tx = VADD(Tn, Tt);
TM = VADD(Tk, Tm);
TN = VADD(Tq, Ts);
TS = VADD(TM, TN);
}
{
V T5, Tf, T9, Td;
{
V T4, Te, T8, Tc;
T4 = LD(&(x[WS(rs, 2)]), ms, &(x[0]));
T5 = VZMUL(T3, T4);
Te = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)]));
Tf = VZMUL(T2, Te);
T8 = LD(&(x[WS(rs, 7)]), ms, &(x[WS(rs, 1)]));
T9 = VZMUL(T7, T8);
Tc = LD(&(x[WS(rs, 8)]), ms, &(x[0]));
Td = VZMUL(Tb, Tc);
}
Ta = VSUB(T5, T9);
Tg = VSUB(Td, Tf);
Tw = VADD(Ta, Tg);
TJ = VADD(T5, T9);
TK = VADD(Td, Tf);
TR = VADD(TJ, TK);
}
{
V Ty, TE, TF, Tv, TI, Th, Tu, TH, TG;
Ty = VMUL(LDK(KP559016994), VSUB(Tw, Tx));
TE = VADD(Tw, Tx);
TF = VFNMS(LDK(KP250000000), TE, TD);
Th = VSUB(Ta, Tg);
Tu = VSUB(Tn, Tt);
Tv = VBYI(VFMA(LDK(KP951056516), Th, VMUL(LDK(KP587785252), Tu)));
TI = VBYI(VFNMS(LDK(KP951056516), Tu, VMUL(LDK(KP587785252), Th)));
ST(&(x[WS(rs, 5)]), VADD(TD, TE), ms, &(x[WS(rs, 1)]));
TH = VSUB(TF, Ty);
ST(&(x[WS(rs, 3)]), VSUB(TH, TI), ms, &(x[WS(rs, 1)]));
ST(&(x[WS(rs, 7)]), VADD(TI, TH), ms, &(x[WS(rs, 1)]));
TG = VADD(Ty, TF);
ST(&(x[WS(rs, 1)]), VADD(Tv, TG), ms, &(x[WS(rs, 1)]));
ST(&(x[WS(rs, 9)]), VSUB(TG, Tv), ms, &(x[WS(rs, 1)]));
}
{
V TV, TT, TU, TP, TY, TL, TO, TX, TW;
TV = VMUL(LDK(KP559016994), VSUB(TR, TS));
TT = VADD(TR, TS);
TU = VFNMS(LDK(KP250000000), TT, TQ);
TL = VSUB(TJ, TK);
TO = VSUB(TM, TN);
TP = VBYI(VFNMS(LDK(KP951056516), TO, VMUL(LDK(KP587785252), TL)));
TY = VBYI(VFMA(LDK(KP951056516), TL, VMUL(LDK(KP587785252), TO)));
ST(&(x[0]), VADD(TQ, TT), ms, &(x[0]));
TX = VADD(TV, TU);
ST(&(x[WS(rs, 4)]), VSUB(TX, TY), ms, &(x[0]));
ST(&(x[WS(rs, 6)]), VADD(TY, TX), ms, &(x[0]));
TW = VSUB(TU, TV);
ST(&(x[WS(rs, 2)]), VADD(TP, TW), ms, &(x[0]));
ST(&(x[WS(rs, 8)]), VSUB(TW, TP), ms, &(x[0]));
}
}
}
}
VLEAVE();
}
static const tw_instr twinstr[] = {
VTW(0, 1),
VTW(0, 3),
VTW(0, 9),
{ TW_NEXT, VL, 0 }
};
static const ct_desc desc = { 10, XSIMD_STRING("t3bv_10"), twinstr, &GENUS, { 51, 36, 6, 0 }, 0, 0, 0 };
void XSIMD(codelet_t3bv_10) (planner *p) {
X(kdft_dit_register) (p, t3bv_10, &desc);
}
#endif