mirror of
https://github.com/tildearrow/furnace.git
synced 2024-12-02 17:27:25 +00:00
54e93db207
not reliable yet
279 lines
7.8 KiB
C
279 lines
7.8 KiB
C
/*
|
|
* Copyright (c) 2003, 2007-14 Matteo Frigo
|
|
* Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
|
*
|
|
*/
|
|
|
|
/* This file was automatically generated --- DO NOT EDIT */
|
|
/* Generated on Tue Sep 14 10:46:57 EDT 2021 */
|
|
|
|
#include "rdft/codelet-rdft.h"
|
|
|
|
#if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
|
|
|
|
/* Generated by: ../../../genfft/gen_hc2hc.native -fma -compact -variables 4 -pipeline-latency 4 -sign 1 -twiddle-log3 -precompute-twiddles -n 5 -dif -name hb2_5 -include rdft/scalar/hb.h */
|
|
|
|
/*
|
|
* This function contains 44 FP additions, 40 FP multiplications,
|
|
* (or, 14 additions, 10 multiplications, 30 fused multiply/add),
|
|
* 37 stack variables, 4 constants, and 20 memory accesses
|
|
*/
|
|
#include "rdft/scalar/hb.h"
|
|
|
|
static void hb2_5(R *cr, R *ci, const R *W, stride rs, INT mb, INT me, INT ms)
|
|
{
|
|
DK(KP951056516, +0.951056516295153572116439333379382143405698634);
|
|
DK(KP559016994, +0.559016994374947424102293417182819058860154590);
|
|
DK(KP250000000, +0.250000000000000000000000000000000000000000000);
|
|
DK(KP618033988, +0.618033988749894848204586834365638117720309180);
|
|
{
|
|
INT m;
|
|
for (m = mb, W = W + ((mb - 1) * 4); m < me; m = m + 1, cr = cr + ms, ci = ci - ms, W = W + 4, MAKE_VOLATILE_STRIDE(10, rs)) {
|
|
E T9, TB, Tz, Tm, TC, TO, TG, TJ, TA, TF;
|
|
T9 = W[0];
|
|
TB = W[3];
|
|
Tz = W[2];
|
|
TA = T9 * Tz;
|
|
TF = T9 * TB;
|
|
Tm = W[1];
|
|
TC = FNMS(Tm, TB, TA);
|
|
TO = FNMS(Tm, Tz, TF);
|
|
TG = FMA(Tm, Tz, TF);
|
|
TJ = FMA(Tm, TB, TA);
|
|
{
|
|
E T1, Tb, TQ, Tw, T8, Ta, Tn, Tj, TL, Ts, Tq, Tr;
|
|
{
|
|
E T4, Tu, T7, Tv;
|
|
T1 = cr[0];
|
|
{
|
|
E T2, T3, T5, T6;
|
|
T2 = cr[WS(rs, 1)];
|
|
T3 = ci[0];
|
|
T4 = T2 + T3;
|
|
Tu = T2 - T3;
|
|
T5 = cr[WS(rs, 2)];
|
|
T6 = ci[WS(rs, 1)];
|
|
T7 = T5 + T6;
|
|
Tv = T5 - T6;
|
|
}
|
|
Tb = T4 - T7;
|
|
TQ = FNMS(KP618033988, Tu, Tv);
|
|
Tw = FMA(KP618033988, Tv, Tu);
|
|
T8 = T4 + T7;
|
|
Ta = FNMS(KP250000000, T8, T1);
|
|
}
|
|
{
|
|
E Tf, To, Ti, Tp;
|
|
Tn = ci[WS(rs, 4)];
|
|
{
|
|
E Td, Te, Tg, Th;
|
|
Td = ci[WS(rs, 3)];
|
|
Te = cr[WS(rs, 4)];
|
|
Tf = Td + Te;
|
|
To = Td - Te;
|
|
Tg = ci[WS(rs, 2)];
|
|
Th = cr[WS(rs, 3)];
|
|
Ti = Tg + Th;
|
|
Tp = Tg - Th;
|
|
}
|
|
Tj = FMA(KP618033988, Ti, Tf);
|
|
TL = FNMS(KP618033988, Tf, Ti);
|
|
Ts = To - Tp;
|
|
Tq = To + Tp;
|
|
Tr = FNMS(KP250000000, Tq, Tn);
|
|
}
|
|
cr[0] = T1 + T8;
|
|
ci[0] = Tn + Tq;
|
|
{
|
|
E Tk, TD, Tx, TH, Tc, Tt;
|
|
Tc = FMA(KP559016994, Tb, Ta);
|
|
Tk = FNMS(KP951056516, Tj, Tc);
|
|
TD = FMA(KP951056516, Tj, Tc);
|
|
Tt = FMA(KP559016994, Ts, Tr);
|
|
Tx = FMA(KP951056516, Tw, Tt);
|
|
TH = FNMS(KP951056516, Tw, Tt);
|
|
{
|
|
E Tl, Ty, TE, TI;
|
|
Tl = T9 * Tk;
|
|
cr[WS(rs, 1)] = FNMS(Tm, Tx, Tl);
|
|
Ty = Tm * Tk;
|
|
ci[WS(rs, 1)] = FMA(T9, Tx, Ty);
|
|
TE = TC * TD;
|
|
cr[WS(rs, 4)] = FNMS(TG, TH, TE);
|
|
TI = TG * TD;
|
|
ci[WS(rs, 4)] = FMA(TC, TH, TI);
|
|
}
|
|
}
|
|
{
|
|
E TM, TT, TR, TV, TK, TP;
|
|
TK = FNMS(KP559016994, Tb, Ta);
|
|
TM = FMA(KP951056516, TL, TK);
|
|
TT = FNMS(KP951056516, TL, TK);
|
|
TP = FNMS(KP559016994, Ts, Tr);
|
|
TR = FNMS(KP951056516, TQ, TP);
|
|
TV = FMA(KP951056516, TQ, TP);
|
|
{
|
|
E TN, TS, TU, TW;
|
|
TN = TJ * TM;
|
|
cr[WS(rs, 2)] = FNMS(TO, TR, TN);
|
|
TS = TO * TM;
|
|
ci[WS(rs, 2)] = FMA(TJ, TR, TS);
|
|
TU = Tz * TT;
|
|
cr[WS(rs, 3)] = FNMS(TB, TV, TU);
|
|
TW = TB * TT;
|
|
ci[WS(rs, 3)] = FMA(Tz, TV, TW);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static const tw_instr twinstr[] = {
|
|
{ TW_CEXP, 1, 1 },
|
|
{ TW_CEXP, 1, 3 },
|
|
{ TW_NEXT, 1, 0 }
|
|
};
|
|
|
|
static const hc2hc_desc desc = { 5, "hb2_5", twinstr, &GENUS, { 14, 10, 30, 0 } };
|
|
|
|
void X(codelet_hb2_5) (planner *p) {
|
|
X(khc2hc_register) (p, hb2_5, &desc);
|
|
}
|
|
#else
|
|
|
|
/* Generated by: ../../../genfft/gen_hc2hc.native -compact -variables 4 -pipeline-latency 4 -sign 1 -twiddle-log3 -precompute-twiddles -n 5 -dif -name hb2_5 -include rdft/scalar/hb.h */
|
|
|
|
/*
|
|
* This function contains 44 FP additions, 32 FP multiplications,
|
|
* (or, 30 additions, 18 multiplications, 14 fused multiply/add),
|
|
* 33 stack variables, 4 constants, and 20 memory accesses
|
|
*/
|
|
#include "rdft/scalar/hb.h"
|
|
|
|
static void hb2_5(R *cr, R *ci, const R *W, stride rs, INT mb, INT me, INT ms)
|
|
{
|
|
DK(KP250000000, +0.250000000000000000000000000000000000000000000);
|
|
DK(KP587785252, +0.587785252292473129168705954639072768597652438);
|
|
DK(KP951056516, +0.951056516295153572116439333379382143405698634);
|
|
DK(KP559016994, +0.559016994374947424102293417182819058860154590);
|
|
{
|
|
INT m;
|
|
for (m = mb, W = W + ((mb - 1) * 4); m < me; m = m + 1, cr = cr + ms, ci = ci - ms, W = W + 4, MAKE_VOLATILE_STRIDE(10, rs)) {
|
|
E Th, Tk, Ti, Tl, Tn, TP, Tx, TN;
|
|
{
|
|
E Tj, Tw, Tm, Tv;
|
|
Th = W[0];
|
|
Tk = W[1];
|
|
Ti = W[2];
|
|
Tl = W[3];
|
|
Tj = Th * Ti;
|
|
Tw = Tk * Ti;
|
|
Tm = Tk * Tl;
|
|
Tv = Th * Tl;
|
|
Tn = Tj + Tm;
|
|
TP = Tv + Tw;
|
|
Tx = Tv - Tw;
|
|
TN = Tj - Tm;
|
|
}
|
|
{
|
|
E T1, Tp, TK, TA, T8, To, T9, Tt, TI, TC, Tg, TB;
|
|
{
|
|
E T4, Ty, T7, Tz;
|
|
T1 = cr[0];
|
|
{
|
|
E T2, T3, T5, T6;
|
|
T2 = cr[WS(rs, 1)];
|
|
T3 = ci[0];
|
|
T4 = T2 + T3;
|
|
Ty = T2 - T3;
|
|
T5 = cr[WS(rs, 2)];
|
|
T6 = ci[WS(rs, 1)];
|
|
T7 = T5 + T6;
|
|
Tz = T5 - T6;
|
|
}
|
|
Tp = KP559016994 * (T4 - T7);
|
|
TK = FMA(KP951056516, Ty, KP587785252 * Tz);
|
|
TA = FNMS(KP951056516, Tz, KP587785252 * Ty);
|
|
T8 = T4 + T7;
|
|
To = FNMS(KP250000000, T8, T1);
|
|
}
|
|
{
|
|
E Tc, Tr, Tf, Ts;
|
|
T9 = ci[WS(rs, 4)];
|
|
{
|
|
E Ta, Tb, Td, Te;
|
|
Ta = ci[WS(rs, 3)];
|
|
Tb = cr[WS(rs, 4)];
|
|
Tc = Ta - Tb;
|
|
Tr = Ta + Tb;
|
|
Td = ci[WS(rs, 2)];
|
|
Te = cr[WS(rs, 3)];
|
|
Tf = Td - Te;
|
|
Ts = Td + Te;
|
|
}
|
|
Tt = FNMS(KP951056516, Ts, KP587785252 * Tr);
|
|
TI = FMA(KP951056516, Tr, KP587785252 * Ts);
|
|
TC = KP559016994 * (Tc - Tf);
|
|
Tg = Tc + Tf;
|
|
TB = FNMS(KP250000000, Tg, T9);
|
|
}
|
|
cr[0] = T1 + T8;
|
|
ci[0] = T9 + Tg;
|
|
{
|
|
E Tu, TF, TE, TG, Tq, TD;
|
|
Tq = To - Tp;
|
|
Tu = Tq - Tt;
|
|
TF = Tq + Tt;
|
|
TD = TB - TC;
|
|
TE = TA + TD;
|
|
TG = TD - TA;
|
|
cr[WS(rs, 2)] = FNMS(Tx, TE, Tn * Tu);
|
|
ci[WS(rs, 2)] = FMA(Tn, TE, Tx * Tu);
|
|
cr[WS(rs, 3)] = FNMS(Tl, TG, Ti * TF);
|
|
ci[WS(rs, 3)] = FMA(Ti, TG, Tl * TF);
|
|
}
|
|
{
|
|
E TJ, TO, TM, TQ, TH, TL;
|
|
TH = Tp + To;
|
|
TJ = TH - TI;
|
|
TO = TH + TI;
|
|
TL = TC + TB;
|
|
TM = TK + TL;
|
|
TQ = TL - TK;
|
|
cr[WS(rs, 1)] = FNMS(Tk, TM, Th * TJ);
|
|
ci[WS(rs, 1)] = FMA(Th, TM, Tk * TJ);
|
|
cr[WS(rs, 4)] = FNMS(TP, TQ, TN * TO);
|
|
ci[WS(rs, 4)] = FMA(TN, TQ, TP * TO);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static const tw_instr twinstr[] = {
|
|
{ TW_CEXP, 1, 1 },
|
|
{ TW_CEXP, 1, 3 },
|
|
{ TW_NEXT, 1, 0 }
|
|
};
|
|
|
|
static const hc2hc_desc desc = { 5, "hb2_5", twinstr, &GENUS, { 30, 18, 14, 0 } };
|
|
|
|
void X(codelet_hb2_5) (planner *p) {
|
|
X(khc2hc_register) (p, hb2_5, &desc);
|
|
}
|
|
#endif
|