furnace/extern/fftw/dft/simd/common/n2fv_14.c

364 lines
12 KiB
C

/*
* Copyright (c) 2003, 2007-14 Matteo Frigo
* Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
*/
/* This file was automatically generated --- DO NOT EDIT */
/* Generated on Tue Sep 14 10:45:12 EDT 2021 */
#include "dft/codelet-dft.h"
#if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
/* Generated by: ../../../genfft/gen_notw_c.native -fma -simd -compact -variables 4 -pipeline-latency 8 -n 14 -name n2fv_14 -with-ostride 2 -include dft/simd/n2f.h -store-multiple 2 */
/*
* This function contains 74 FP additions, 48 FP multiplications,
* (or, 32 additions, 6 multiplications, 42 fused multiply/add),
* 51 stack variables, 6 constants, and 35 memory accesses
*/
#include "dft/simd/n2f.h"
static void n2fv_14(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs)
{
DVK(KP801937735, +0.801937735804838252472204639014890102331838324);
DVK(KP974927912, +0.974927912181823607018131682993931217232785801);
DVK(KP554958132, +0.554958132087371191422194871006410481067288862);
DVK(KP900968867, +0.900968867902419126236102319507445051165919162);
DVK(KP692021471, +0.692021471630095869627814897002069140197260599);
DVK(KP356895867, +0.356895867892209443894399510021300583399127187);
{
INT i;
const R *xi;
R *xo;
xi = ri;
xo = ro;
for (i = v; i > 0; i = i - VL, xi = xi + (VL * ivs), xo = xo + (VL * ovs), MAKE_VOLATILE_STRIDE(28, is), MAKE_VOLATILE_STRIDE(28, os)) {
V T3, TH, Ts, TV, TW, Tt, Tu, TU, Ta, To, Th, Tp, TC, Tx, TK;
V TQ, TN, TR, T14, TZ, T1, T2;
T1 = LD(&(xi[0]), ivs, &(xi[0]));
T2 = LD(&(xi[WS(is, 7)]), ivs, &(xi[WS(is, 1)]));
T3 = VSUB(T1, T2);
TH = VADD(T1, T2);
{
V T6, TI, T9, TJ, Tn, TP, Tk, TO, Tg, TM, Td, TL;
{
V T4, T5, Ti, Tj;
T4 = LD(&(xi[WS(is, 2)]), ivs, &(xi[0]));
T5 = LD(&(xi[WS(is, 9)]), ivs, &(xi[WS(is, 1)]));
T6 = VSUB(T4, T5);
TI = VADD(T4, T5);
{
V T7, T8, Tl, Tm;
T7 = LD(&(xi[WS(is, 12)]), ivs, &(xi[0]));
T8 = LD(&(xi[WS(is, 5)]), ivs, &(xi[WS(is, 1)]));
T9 = VSUB(T7, T8);
TJ = VADD(T7, T8);
Tl = LD(&(xi[WS(is, 8)]), ivs, &(xi[0]));
Tm = LD(&(xi[WS(is, 1)]), ivs, &(xi[WS(is, 1)]));
Tn = VSUB(Tl, Tm);
TP = VADD(Tl, Tm);
}
Ti = LD(&(xi[WS(is, 6)]), ivs, &(xi[0]));
Tj = LD(&(xi[WS(is, 13)]), ivs, &(xi[WS(is, 1)]));
Tk = VSUB(Ti, Tj);
TO = VADD(Ti, Tj);
{
V Te, Tf, Tb, Tc;
Te = LD(&(xi[WS(is, 10)]), ivs, &(xi[0]));
Tf = LD(&(xi[WS(is, 3)]), ivs, &(xi[WS(is, 1)]));
Tg = VSUB(Te, Tf);
TM = VADD(Te, Tf);
Tb = LD(&(xi[WS(is, 4)]), ivs, &(xi[0]));
Tc = LD(&(xi[WS(is, 11)]), ivs, &(xi[WS(is, 1)]));
Td = VSUB(Tb, Tc);
TL = VADD(Tb, Tc);
}
}
Ts = VSUB(T9, T6);
TV = VSUB(TL, TM);
TW = VSUB(TJ, TI);
Tt = VSUB(Tn, Tk);
Tu = VSUB(Tg, Td);
TU = VSUB(TO, TP);
Ta = VADD(T6, T9);
To = VADD(Tk, Tn);
Th = VADD(Td, Tg);
Tp = VFNMS(LDK(KP356895867), Ta, To);
TC = VFNMS(LDK(KP356895867), To, Th);
Tx = VFNMS(LDK(KP356895867), Th, Ta);
TK = VADD(TI, TJ);
TQ = VADD(TO, TP);
TN = VADD(TL, TM);
TR = VFNMS(LDK(KP356895867), TQ, TN);
T14 = VFNMS(LDK(KP356895867), TN, TK);
TZ = VFNMS(LDK(KP356895867), TK, TQ);
}
{
V T1a, T1b, T19, T1c, T1f, T1i, T1j;
T19 = VADD(T3, VADD(Ta, VADD(Th, To)));
STM2(&(xo[14]), T19, ovs, &(xo[2]));
T1a = VADD(TH, VADD(TK, VADD(TN, TQ)));
STM2(&(xo[0]), T1a, ovs, &(xo[0]));
{
V Tr, Tw, Tq, Tv;
Tq = VFNMS(LDK(KP692021471), Tp, Th);
Tr = VFNMS(LDK(KP900968867), Tq, T3);
Tv = VFMA(LDK(KP554958132), Tu, Tt);
Tw = VMUL(LDK(KP974927912), VFNMS(LDK(KP801937735), Tv, Ts));
T1b = VFNMSI(Tw, Tr);
STM2(&(xo[10]), T1b, ovs, &(xo[2]));
T1c = VFMAI(Tw, Tr);
STM2(&(xo[18]), T1c, ovs, &(xo[2]));
}
{
V T16, T18, T15, T17, T1d, T1e;
T15 = VFNMS(LDK(KP692021471), T14, TQ);
T16 = VFNMS(LDK(KP900968867), T15, TH);
T17 = VFNMS(LDK(KP554958132), TU, TW);
T18 = VMUL(LDK(KP974927912), VFNMS(LDK(KP801937735), T17, TV));
T1d = VFMAI(T18, T16);
STM2(&(xo[12]), T1d, ovs, &(xo[0]));
STN2(&(xo[12]), T1d, T19, ovs);
T1e = VFNMSI(T18, T16);
STM2(&(xo[16]), T1e, ovs, &(xo[0]));
STN2(&(xo[16]), T1e, T1c, ovs);
}
{
V Tz, TB, Ty, TA, T1g;
Ty = VFNMS(LDK(KP692021471), Tx, To);
Tz = VFNMS(LDK(KP900968867), Ty, T3);
TA = VFMA(LDK(KP554958132), Tt, Ts);
TB = VMUL(LDK(KP974927912), VFMA(LDK(KP801937735), TA, Tu));
T1f = VFNMSI(TB, Tz);
STM2(&(xo[26]), T1f, ovs, &(xo[2]));
T1g = VFMAI(TB, Tz);
STM2(&(xo[2]), T1g, ovs, &(xo[2]));
STN2(&(xo[0]), T1a, T1g, ovs);
}
{
V TT, TY, TS, TX, T1h;
TS = VFNMS(LDK(KP692021471), TR, TK);
TT = VFNMS(LDK(KP900968867), TS, TH);
TX = VFMA(LDK(KP554958132), TW, TV);
TY = VMUL(LDK(KP974927912), VFNMS(LDK(KP801937735), TX, TU));
T1h = VFMAI(TY, TT);
STM2(&(xo[8]), T1h, ovs, &(xo[0]));
STN2(&(xo[8]), T1h, T1b, ovs);
T1i = VFNMSI(TY, TT);
STM2(&(xo[20]), T1i, ovs, &(xo[0]));
}
{
V T11, T13, T10, T12, T1k;
T10 = VFNMS(LDK(KP692021471), TZ, TN);
T11 = VFNMS(LDK(KP900968867), T10, TH);
T12 = VFMA(LDK(KP554958132), TV, TU);
T13 = VMUL(LDK(KP974927912), VFMA(LDK(KP801937735), T12, TW));
T1j = VFMAI(T13, T11);
STM2(&(xo[4]), T1j, ovs, &(xo[0]));
T1k = VFNMSI(T13, T11);
STM2(&(xo[24]), T1k, ovs, &(xo[0]));
STN2(&(xo[24]), T1k, T1f, ovs);
}
{
V TE, TG, TD, TF, T1l, T1m;
TD = VFNMS(LDK(KP692021471), TC, Ta);
TE = VFNMS(LDK(KP900968867), TD, T3);
TF = VFNMS(LDK(KP554958132), Ts, Tu);
TG = VMUL(LDK(KP974927912), VFNMS(LDK(KP801937735), TF, Tt));
T1l = VFNMSI(TG, TE);
STM2(&(xo[22]), T1l, ovs, &(xo[2]));
STN2(&(xo[20]), T1i, T1l, ovs);
T1m = VFMAI(TG, TE);
STM2(&(xo[6]), T1m, ovs, &(xo[2]));
STN2(&(xo[4]), T1j, T1m, ovs);
}
}
}
}
VLEAVE();
}
static const kdft_desc desc = { 14, XSIMD_STRING("n2fv_14"), { 32, 6, 42, 0 }, &GENUS, 0, 2, 0, 0 };
void XSIMD(codelet_n2fv_14) (planner *p) { X(kdft_register) (p, n2fv_14, &desc);
}
#else
/* Generated by: ../../../genfft/gen_notw_c.native -simd -compact -variables 4 -pipeline-latency 8 -n 14 -name n2fv_14 -with-ostride 2 -include dft/simd/n2f.h -store-multiple 2 */
/*
* This function contains 74 FP additions, 36 FP multiplications,
* (or, 50 additions, 12 multiplications, 24 fused multiply/add),
* 39 stack variables, 6 constants, and 35 memory accesses
*/
#include "dft/simd/n2f.h"
static void n2fv_14(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs)
{
DVK(KP222520933, +0.222520933956314404288902564496794759466355569);
DVK(KP900968867, +0.900968867902419126236102319507445051165919162);
DVK(KP623489801, +0.623489801858733530525004884004239810632274731);
DVK(KP433883739, +0.433883739117558120475768332848358754609990728);
DVK(KP781831482, +0.781831482468029808708444526674057750232334519);
DVK(KP974927912, +0.974927912181823607018131682993931217232785801);
{
INT i;
const R *xi;
R *xo;
xi = ri;
xo = ro;
for (i = v; i > 0; i = i - VL, xi = xi + (VL * ivs), xo = xo + (VL * ovs), MAKE_VOLATILE_STRIDE(28, is), MAKE_VOLATILE_STRIDE(28, os)) {
V T3, Ty, To, TK, Tr, TE, Ta, TJ, Tq, TB, Th, TL, Ts, TH, T1;
V T2;
T1 = LD(&(xi[0]), ivs, &(xi[0]));
T2 = LD(&(xi[WS(is, 7)]), ivs, &(xi[WS(is, 1)]));
T3 = VSUB(T1, T2);
Ty = VADD(T1, T2);
{
V Tk, TC, Tn, TD;
{
V Ti, Tj, Tl, Tm;
Ti = LD(&(xi[WS(is, 6)]), ivs, &(xi[0]));
Tj = LD(&(xi[WS(is, 13)]), ivs, &(xi[WS(is, 1)]));
Tk = VSUB(Ti, Tj);
TC = VADD(Ti, Tj);
Tl = LD(&(xi[WS(is, 8)]), ivs, &(xi[0]));
Tm = LD(&(xi[WS(is, 1)]), ivs, &(xi[WS(is, 1)]));
Tn = VSUB(Tl, Tm);
TD = VADD(Tl, Tm);
}
To = VADD(Tk, Tn);
TK = VSUB(TC, TD);
Tr = VSUB(Tn, Tk);
TE = VADD(TC, TD);
}
{
V T6, Tz, T9, TA;
{
V T4, T5, T7, T8;
T4 = LD(&(xi[WS(is, 2)]), ivs, &(xi[0]));
T5 = LD(&(xi[WS(is, 9)]), ivs, &(xi[WS(is, 1)]));
T6 = VSUB(T4, T5);
Tz = VADD(T4, T5);
T7 = LD(&(xi[WS(is, 12)]), ivs, &(xi[0]));
T8 = LD(&(xi[WS(is, 5)]), ivs, &(xi[WS(is, 1)]));
T9 = VSUB(T7, T8);
TA = VADD(T7, T8);
}
Ta = VADD(T6, T9);
TJ = VSUB(TA, Tz);
Tq = VSUB(T9, T6);
TB = VADD(Tz, TA);
}
{
V Td, TF, Tg, TG;
{
V Tb, Tc, Te, Tf;
Tb = LD(&(xi[WS(is, 4)]), ivs, &(xi[0]));
Tc = LD(&(xi[WS(is, 11)]), ivs, &(xi[WS(is, 1)]));
Td = VSUB(Tb, Tc);
TF = VADD(Tb, Tc);
Te = LD(&(xi[WS(is, 10)]), ivs, &(xi[0]));
Tf = LD(&(xi[WS(is, 3)]), ivs, &(xi[WS(is, 1)]));
Tg = VSUB(Te, Tf);
TG = VADD(Te, Tf);
}
Th = VADD(Td, Tg);
TL = VSUB(TF, TG);
Ts = VSUB(Tg, Td);
TH = VADD(TF, TG);
}
{
V TR, TS, TT, TU, TV, TW;
TR = VADD(T3, VADD(Ta, VADD(Th, To)));
STM2(&(xo[14]), TR, ovs, &(xo[2]));
TS = VADD(Ty, VADD(TB, VADD(TH, TE)));
STM2(&(xo[0]), TS, ovs, &(xo[0]));
{
V Tt, Tp, TP, TQ;
Tt = VBYI(VFNMS(LDK(KP781831482), Tr, VFNMS(LDK(KP433883739), Ts, VMUL(LDK(KP974927912), Tq))));
Tp = VFMA(LDK(KP623489801), To, VFNMS(LDK(KP900968867), Th, VFNMS(LDK(KP222520933), Ta, T3)));
TT = VSUB(Tp, Tt);
STM2(&(xo[10]), TT, ovs, &(xo[2]));
TU = VADD(Tp, Tt);
STM2(&(xo[18]), TU, ovs, &(xo[2]));
TP = VBYI(VFMA(LDK(KP974927912), TJ, VFMA(LDK(KP433883739), TL, VMUL(LDK(KP781831482), TK))));
TQ = VFMA(LDK(KP623489801), TE, VFNMS(LDK(KP900968867), TH, VFNMS(LDK(KP222520933), TB, Ty)));
TV = VADD(TP, TQ);
STM2(&(xo[4]), TV, ovs, &(xo[0]));
TW = VSUB(TQ, TP);
STM2(&(xo[24]), TW, ovs, &(xo[0]));
}
{
V Tv, Tu, TX, TY;
Tv = VBYI(VFMA(LDK(KP781831482), Tq, VFMA(LDK(KP974927912), Ts, VMUL(LDK(KP433883739), Tr))));
Tu = VFMA(LDK(KP623489801), Ta, VFNMS(LDK(KP900968867), To, VFNMS(LDK(KP222520933), Th, T3)));
TX = VSUB(Tu, Tv);
STM2(&(xo[26]), TX, ovs, &(xo[2]));
STN2(&(xo[24]), TW, TX, ovs);
TY = VADD(Tu, Tv);
STM2(&(xo[2]), TY, ovs, &(xo[2]));
STN2(&(xo[0]), TS, TY, ovs);
}
{
V TM, TI, TZ, T10;
TM = VBYI(VFNMS(LDK(KP433883739), TK, VFNMS(LDK(KP974927912), TL, VMUL(LDK(KP781831482), TJ))));
TI = VFMA(LDK(KP623489801), TB, VFNMS(LDK(KP900968867), TE, VFNMS(LDK(KP222520933), TH, Ty)));
TZ = VSUB(TI, TM);
STM2(&(xo[12]), TZ, ovs, &(xo[0]));
STN2(&(xo[12]), TZ, TR, ovs);
T10 = VADD(TM, TI);
STM2(&(xo[16]), T10, ovs, &(xo[0]));
STN2(&(xo[16]), T10, TU, ovs);
}
{
V T12, TO, TN, T11;
TO = VBYI(VFMA(LDK(KP433883739), TJ, VFNMS(LDK(KP974927912), TK, VMUL(LDK(KP781831482), TL))));
TN = VFMA(LDK(KP623489801), TH, VFNMS(LDK(KP222520933), TE, VFNMS(LDK(KP900968867), TB, Ty)));
T11 = VSUB(TN, TO);
STM2(&(xo[8]), T11, ovs, &(xo[0]));
STN2(&(xo[8]), T11, TT, ovs);
T12 = VADD(TO, TN);
STM2(&(xo[20]), T12, ovs, &(xo[0]));
{
V Tx, Tw, T13, T14;
Tx = VBYI(VFMA(LDK(KP433883739), Tq, VFNMS(LDK(KP781831482), Ts, VMUL(LDK(KP974927912), Tr))));
Tw = VFMA(LDK(KP623489801), Th, VFNMS(LDK(KP222520933), To, VFNMS(LDK(KP900968867), Ta, T3)));
T13 = VSUB(Tw, Tx);
STM2(&(xo[22]), T13, ovs, &(xo[2]));
STN2(&(xo[20]), T12, T13, ovs);
T14 = VADD(Tw, Tx);
STM2(&(xo[6]), T14, ovs, &(xo[2]));
STN2(&(xo[4]), TV, T14, ovs);
}
}
}
}
}
VLEAVE();
}
static const kdft_desc desc = { 14, XSIMD_STRING("n2fv_14"), { 50, 12, 24, 0 }, &GENUS, 0, 2, 0, 0 };
void XSIMD(codelet_n2fv_14) (planner *p) { X(kdft_register) (p, n2fv_14, &desc);
}
#endif