mirror of
https://github.com/tildearrow/furnace.git
synced 2024-11-16 09:45:06 +00:00
54e93db207
not reliable yet
220 lines
5.4 KiB
C
220 lines
5.4 KiB
C
/*
|
|
* Copyright (c) 2003, 2007-14 Matteo Frigo
|
|
* Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
|
*
|
|
*/
|
|
|
|
|
|
/* Solve an R2HC/HC2R problem via post/pre processing of a DHT. This
|
|
is mainly useful because we can use Rader to compute DHTs of prime
|
|
sizes. It also allows us to express hc2r problems in terms of r2hc
|
|
(via dht-r2hc), and to do hc2r problems without destroying the input. */
|
|
|
|
#include "rdft/rdft.h"
|
|
|
|
typedef struct {
|
|
solver super;
|
|
} S;
|
|
|
|
typedef struct {
|
|
plan_rdft super;
|
|
plan *cld;
|
|
INT is, os;
|
|
INT n;
|
|
} P;
|
|
|
|
static void apply_r2hc(const plan *ego_, R *I, R *O)
|
|
{
|
|
const P *ego = (const P *) ego_;
|
|
INT os;
|
|
INT i, n;
|
|
|
|
{
|
|
plan_rdft *cld = (plan_rdft *) ego->cld;
|
|
cld->apply((plan *) cld, I, O);
|
|
}
|
|
|
|
n = ego->n;
|
|
os = ego->os;
|
|
for (i = 1; i < n - i; ++i) {
|
|
E a, b;
|
|
a = K(0.5) * O[os * i];
|
|
b = K(0.5) * O[os * (n - i)];
|
|
O[os * i] = a + b;
|
|
#if FFT_SIGN == -1
|
|
O[os * (n - i)] = b - a;
|
|
#else
|
|
O[os * (n - i)] = a - b;
|
|
#endif
|
|
}
|
|
}
|
|
|
|
/* hc2r, destroying input as usual */
|
|
static void apply_hc2r(const plan *ego_, R *I, R *O)
|
|
{
|
|
const P *ego = (const P *) ego_;
|
|
INT is = ego->is;
|
|
INT i, n = ego->n;
|
|
|
|
for (i = 1; i < n - i; ++i) {
|
|
E a, b;
|
|
a = I[is * i];
|
|
b = I[is * (n - i)];
|
|
#if FFT_SIGN == -1
|
|
I[is * i] = a - b;
|
|
I[is * (n - i)] = a + b;
|
|
#else
|
|
I[is * i] = a + b;
|
|
I[is * (n - i)] = a - b;
|
|
#endif
|
|
}
|
|
|
|
{
|
|
plan_rdft *cld = (plan_rdft *) ego->cld;
|
|
cld->apply((plan *) cld, I, O);
|
|
}
|
|
}
|
|
|
|
/* hc2r, without destroying input */
|
|
static void apply_hc2r_save(const plan *ego_, R *I, R *O)
|
|
{
|
|
const P *ego = (const P *) ego_;
|
|
INT is = ego->is, os = ego->os;
|
|
INT i, n = ego->n;
|
|
|
|
O[0] = I[0];
|
|
for (i = 1; i < n - i; ++i) {
|
|
E a, b;
|
|
a = I[is * i];
|
|
b = I[is * (n - i)];
|
|
#if FFT_SIGN == -1
|
|
O[os * i] = a - b;
|
|
O[os * (n - i)] = a + b;
|
|
#else
|
|
O[os * i] = a + b;
|
|
O[os * (n - i)] = a - b;
|
|
#endif
|
|
}
|
|
if (i == n - i)
|
|
O[os * i] = I[is * i];
|
|
|
|
{
|
|
plan_rdft *cld = (plan_rdft *) ego->cld;
|
|
cld->apply((plan *) cld, O, O);
|
|
}
|
|
}
|
|
|
|
static void awake(plan *ego_, enum wakefulness wakefulness)
|
|
{
|
|
P *ego = (P *) ego_;
|
|
X(plan_awake)(ego->cld, wakefulness);
|
|
}
|
|
|
|
static void destroy(plan *ego_)
|
|
{
|
|
P *ego = (P *) ego_;
|
|
X(plan_destroy_internal)(ego->cld);
|
|
}
|
|
|
|
static void print(const plan *ego_, printer *p)
|
|
{
|
|
const P *ego = (const P *) ego_;
|
|
p->print(p, "(%s-dht-%D%(%p%))",
|
|
ego->super.apply == apply_r2hc ? "r2hc" : "hc2r",
|
|
ego->n, ego->cld);
|
|
}
|
|
|
|
static int applicable0(const solver *ego_, const problem *p_)
|
|
{
|
|
const problem_rdft *p = (const problem_rdft *) p_;
|
|
UNUSED(ego_);
|
|
|
|
return (1
|
|
&& p->sz->rnk == 1
|
|
&& p->vecsz->rnk == 0
|
|
&& (p->kind[0] == R2HC || p->kind[0] == HC2R)
|
|
|
|
/* hack: size-2 DHT etc. are defined as being equivalent
|
|
to size-2 R2HC in problem.c, so we need this to prevent
|
|
infinite loops for size 2 in EXHAUSTIVE mode: */
|
|
&& p->sz->dims[0].n > 2
|
|
);
|
|
}
|
|
|
|
static int applicable(const solver *ego, const problem *p_,
|
|
const planner *plnr)
|
|
{
|
|
return (!NO_SLOWP(plnr) && applicable0(ego, p_));
|
|
}
|
|
|
|
static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr)
|
|
{
|
|
P *pln;
|
|
const problem_rdft *p;
|
|
problem *cldp;
|
|
plan *cld;
|
|
|
|
static const plan_adt padt = {
|
|
X(rdft_solve), awake, print, destroy
|
|
};
|
|
|
|
if (!applicable(ego_, p_, plnr))
|
|
return (plan *)0;
|
|
|
|
p = (const problem_rdft *) p_;
|
|
|
|
if (p->kind[0] == R2HC || !NO_DESTROY_INPUTP(plnr))
|
|
cldp = X(mkproblem_rdft_1)(p->sz, p->vecsz, p->I, p->O, DHT);
|
|
else {
|
|
tensor *sz = X(tensor_copy_inplace)(p->sz, INPLACE_OS);
|
|
cldp = X(mkproblem_rdft_1)(sz, p->vecsz, p->O, p->O, DHT);
|
|
X(tensor_destroy)(sz);
|
|
}
|
|
cld = X(mkplan_d)(plnr, cldp);
|
|
if (!cld) return (plan *)0;
|
|
|
|
pln = MKPLAN_RDFT(P, &padt, p->kind[0] == R2HC ?
|
|
apply_r2hc : (NO_DESTROY_INPUTP(plnr) ?
|
|
apply_hc2r_save : apply_hc2r));
|
|
pln->n = p->sz->dims[0].n;
|
|
pln->is = p->sz->dims[0].is;
|
|
pln->os = p->sz->dims[0].os;
|
|
pln->cld = cld;
|
|
|
|
pln->super.super.ops = cld->ops;
|
|
pln->super.super.ops.other += 4 * ((pln->n - 1)/2);
|
|
pln->super.super.ops.add += 2 * ((pln->n - 1)/2);
|
|
if (p->kind[0] == R2HC)
|
|
pln->super.super.ops.mul += 2 * ((pln->n - 1)/2);
|
|
if (pln->super.apply == apply_hc2r_save)
|
|
pln->super.super.ops.other += 2 + (pln->n % 2 ? 0 : 2);
|
|
|
|
return &(pln->super.super);
|
|
}
|
|
|
|
/* constructor */
|
|
static solver *mksolver(void)
|
|
{
|
|
static const solver_adt sadt = { PROBLEM_RDFT, mkplan, 0 };
|
|
S *slv = MKSOLVER(S, &sadt);
|
|
return &(slv->super);
|
|
}
|
|
|
|
void X(rdft_dht_register)(planner *p)
|
|
{
|
|
REGISTER_SOLVER(p, mksolver());
|
|
}
|