mirror of
https://github.com/tildearrow/furnace.git
synced 2024-11-24 05:25:12 +00:00
54e93db207
not reliable yet
410 lines
11 KiB
C
410 lines
11 KiB
C
/*
|
|
* Copyright (c) 2003, 2007-14 Matteo Frigo
|
|
* Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
|
*
|
|
*/
|
|
|
|
|
|
/* Do an R{E,O}DFT{01,10} problem via an R2HC problem, with some
|
|
pre/post-processing ala FFTPACK. */
|
|
|
|
#include "reodft/reodft.h"
|
|
|
|
typedef struct {
|
|
solver super;
|
|
} S;
|
|
|
|
typedef struct {
|
|
plan_rdft super;
|
|
plan *cld;
|
|
twid *td;
|
|
INT is, os;
|
|
INT n;
|
|
INT vl;
|
|
INT ivs, ovs;
|
|
rdft_kind kind;
|
|
} P;
|
|
|
|
/* A real-even-01 DFT operates logically on a size-4N array:
|
|
I 0 -r(I*) -I 0 r(I*),
|
|
where r denotes reversal and * denotes deletion of the 0th element.
|
|
To compute the transform of this, we imagine performing a radix-4
|
|
(real-input) DIF step, which turns the size-4N DFT into 4 size-N
|
|
(contiguous) DFTs, two of which are zero and two of which are
|
|
conjugates. The non-redundant size-N DFT has halfcomplex input, so
|
|
we can do it with a size-N hc2r transform. (In order to share
|
|
plans with the re10 (inverse) transform, however, we use the DHT
|
|
trick to re-express the hc2r problem as r2hc. This has little cost
|
|
since we are already pre- and post-processing the data in {i,n-i}
|
|
order.) Finally, we have to write out the data in the correct
|
|
order...the two size-N redundant (conjugate) hc2r DFTs correspond
|
|
to the even and odd outputs in O (i.e. the usual interleaved output
|
|
of DIF transforms); since this data has even symmetry, we only
|
|
write the first half of it.
|
|
|
|
The real-even-10 DFT is just the reverse of these steps, i.e. a
|
|
radix-4 DIT transform. There, however, we just use the r2hc
|
|
transform naturally without resorting to the DHT trick.
|
|
|
|
A real-odd-01 DFT is very similar, except that the input is
|
|
0 I (rI)* 0 -I -(rI)*. This format, however, can be transformed
|
|
into precisely the real-even-01 format above by sending I -> rI
|
|
and shifting the array by N. The former swap is just another
|
|
transformation on the input during preprocessing; the latter
|
|
multiplies the even/odd outputs by i/-i, which combines with
|
|
the factor of -i (to take the imaginary part) to simply flip
|
|
the sign of the odd outputs. Vice-versa for real-odd-10.
|
|
|
|
The FFTPACK source code was very helpful in working this out.
|
|
(They do unnecessary passes over the array, though.) The same
|
|
algorithm is also described in:
|
|
|
|
John Makhoul, "A fast cosine transform in one and two dimensions,"
|
|
IEEE Trans. on Acoust. Speech and Sig. Proc., ASSP-28 (1), 27--34 (1980).
|
|
|
|
Note that Numerical Recipes suggests a different algorithm that
|
|
requires more operations and uses trig. functions for both the pre-
|
|
and post-processing passes.
|
|
*/
|
|
|
|
static void apply_re01(const plan *ego_, R *I, R *O)
|
|
{
|
|
const P *ego = (const P *) ego_;
|
|
INT is = ego->is, os = ego->os;
|
|
INT i, n = ego->n;
|
|
INT iv, vl = ego->vl;
|
|
INT ivs = ego->ivs, ovs = ego->ovs;
|
|
R *W = ego->td->W;
|
|
R *buf;
|
|
|
|
buf = (R *) MALLOC(sizeof(R) * n, BUFFERS);
|
|
|
|
for (iv = 0; iv < vl; ++iv, I += ivs, O += ovs) {
|
|
buf[0] = I[0];
|
|
for (i = 1; i < n - i; ++i) {
|
|
E a, b, apb, amb, wa, wb;
|
|
a = I[is * i];
|
|
b = I[is * (n - i)];
|
|
apb = a + b;
|
|
amb = a - b;
|
|
wa = W[2*i];
|
|
wb = W[2*i + 1];
|
|
buf[i] = wa * amb + wb * apb;
|
|
buf[n - i] = wa * apb - wb * amb;
|
|
}
|
|
if (i == n - i) {
|
|
buf[i] = K(2.0) * I[is * i] * W[2*i];
|
|
}
|
|
|
|
{
|
|
plan_rdft *cld = (plan_rdft *) ego->cld;
|
|
cld->apply((plan *) cld, buf, buf);
|
|
}
|
|
|
|
O[0] = buf[0];
|
|
for (i = 1; i < n - i; ++i) {
|
|
E a, b;
|
|
INT k;
|
|
a = buf[i];
|
|
b = buf[n - i];
|
|
k = i + i;
|
|
O[os * (k - 1)] = a - b;
|
|
O[os * k] = a + b;
|
|
}
|
|
if (i == n - i) {
|
|
O[os * (n - 1)] = buf[i];
|
|
}
|
|
}
|
|
|
|
X(ifree)(buf);
|
|
}
|
|
|
|
/* ro01 is same as re01, but with i <-> n - 1 - i in the input and
|
|
the sign of the odd output elements flipped. */
|
|
static void apply_ro01(const plan *ego_, R *I, R *O)
|
|
{
|
|
const P *ego = (const P *) ego_;
|
|
INT is = ego->is, os = ego->os;
|
|
INT i, n = ego->n;
|
|
INT iv, vl = ego->vl;
|
|
INT ivs = ego->ivs, ovs = ego->ovs;
|
|
R *W = ego->td->W;
|
|
R *buf;
|
|
|
|
buf = (R *) MALLOC(sizeof(R) * n, BUFFERS);
|
|
|
|
for (iv = 0; iv < vl; ++iv, I += ivs, O += ovs) {
|
|
buf[0] = I[is * (n - 1)];
|
|
for (i = 1; i < n - i; ++i) {
|
|
E a, b, apb, amb, wa, wb;
|
|
a = I[is * (n - 1 - i)];
|
|
b = I[is * (i - 1)];
|
|
apb = a + b;
|
|
amb = a - b;
|
|
wa = W[2*i];
|
|
wb = W[2*i+1];
|
|
buf[i] = wa * amb + wb * apb;
|
|
buf[n - i] = wa * apb - wb * amb;
|
|
}
|
|
if (i == n - i) {
|
|
buf[i] = K(2.0) * I[is * (i - 1)] * W[2*i];
|
|
}
|
|
|
|
{
|
|
plan_rdft *cld = (plan_rdft *) ego->cld;
|
|
cld->apply((plan *) cld, buf, buf);
|
|
}
|
|
|
|
O[0] = buf[0];
|
|
for (i = 1; i < n - i; ++i) {
|
|
E a, b;
|
|
INT k;
|
|
a = buf[i];
|
|
b = buf[n - i];
|
|
k = i + i;
|
|
O[os * (k - 1)] = b - a;
|
|
O[os * k] = a + b;
|
|
}
|
|
if (i == n - i) {
|
|
O[os * (n - 1)] = -buf[i];
|
|
}
|
|
}
|
|
|
|
X(ifree)(buf);
|
|
}
|
|
|
|
static void apply_re10(const plan *ego_, R *I, R *O)
|
|
{
|
|
const P *ego = (const P *) ego_;
|
|
INT is = ego->is, os = ego->os;
|
|
INT i, n = ego->n;
|
|
INT iv, vl = ego->vl;
|
|
INT ivs = ego->ivs, ovs = ego->ovs;
|
|
R *W = ego->td->W;
|
|
R *buf;
|
|
|
|
buf = (R *) MALLOC(sizeof(R) * n, BUFFERS);
|
|
|
|
for (iv = 0; iv < vl; ++iv, I += ivs, O += ovs) {
|
|
buf[0] = I[0];
|
|
for (i = 1; i < n - i; ++i) {
|
|
E u, v;
|
|
INT k = i + i;
|
|
u = I[is * (k - 1)];
|
|
v = I[is * k];
|
|
buf[n - i] = u;
|
|
buf[i] = v;
|
|
}
|
|
if (i == n - i) {
|
|
buf[i] = I[is * (n - 1)];
|
|
}
|
|
|
|
{
|
|
plan_rdft *cld = (plan_rdft *) ego->cld;
|
|
cld->apply((plan *) cld, buf, buf);
|
|
}
|
|
|
|
O[0] = K(2.0) * buf[0];
|
|
for (i = 1; i < n - i; ++i) {
|
|
E a, b, wa, wb;
|
|
a = K(2.0) * buf[i];
|
|
b = K(2.0) * buf[n - i];
|
|
wa = W[2*i];
|
|
wb = W[2*i + 1];
|
|
O[os * i] = wa * a + wb * b;
|
|
O[os * (n - i)] = wb * a - wa * b;
|
|
}
|
|
if (i == n - i) {
|
|
O[os * i] = K(2.0) * buf[i] * W[2*i];
|
|
}
|
|
}
|
|
|
|
X(ifree)(buf);
|
|
}
|
|
|
|
/* ro10 is same as re10, but with i <-> n - 1 - i in the output and
|
|
the sign of the odd input elements flipped. */
|
|
static void apply_ro10(const plan *ego_, R *I, R *O)
|
|
{
|
|
const P *ego = (const P *) ego_;
|
|
INT is = ego->is, os = ego->os;
|
|
INT i, n = ego->n;
|
|
INT iv, vl = ego->vl;
|
|
INT ivs = ego->ivs, ovs = ego->ovs;
|
|
R *W = ego->td->W;
|
|
R *buf;
|
|
|
|
buf = (R *) MALLOC(sizeof(R) * n, BUFFERS);
|
|
|
|
for (iv = 0; iv < vl; ++iv, I += ivs, O += ovs) {
|
|
buf[0] = I[0];
|
|
for (i = 1; i < n - i; ++i) {
|
|
E u, v;
|
|
INT k = i + i;
|
|
u = -I[is * (k - 1)];
|
|
v = I[is * k];
|
|
buf[n - i] = u;
|
|
buf[i] = v;
|
|
}
|
|
if (i == n - i) {
|
|
buf[i] = -I[is * (n - 1)];
|
|
}
|
|
|
|
{
|
|
plan_rdft *cld = (plan_rdft *) ego->cld;
|
|
cld->apply((plan *) cld, buf, buf);
|
|
}
|
|
|
|
O[os * (n - 1)] = K(2.0) * buf[0];
|
|
for (i = 1; i < n - i; ++i) {
|
|
E a, b, wa, wb;
|
|
a = K(2.0) * buf[i];
|
|
b = K(2.0) * buf[n - i];
|
|
wa = W[2*i];
|
|
wb = W[2*i + 1];
|
|
O[os * (n - 1 - i)] = wa * a + wb * b;
|
|
O[os * (i - 1)] = wb * a - wa * b;
|
|
}
|
|
if (i == n - i) {
|
|
O[os * (i - 1)] = K(2.0) * buf[i] * W[2*i];
|
|
}
|
|
}
|
|
|
|
X(ifree)(buf);
|
|
}
|
|
|
|
static void awake(plan *ego_, enum wakefulness wakefulness)
|
|
{
|
|
P *ego = (P *) ego_;
|
|
static const tw_instr reodft010e_tw[] = {
|
|
{ TW_COS, 0, 1 },
|
|
{ TW_SIN, 0, 1 },
|
|
{ TW_NEXT, 1, 0 }
|
|
};
|
|
|
|
X(plan_awake)(ego->cld, wakefulness);
|
|
|
|
X(twiddle_awake)(wakefulness, &ego->td, reodft010e_tw,
|
|
4*ego->n, 1, ego->n/2+1);
|
|
}
|
|
|
|
static void destroy(plan *ego_)
|
|
{
|
|
P *ego = (P *) ego_;
|
|
X(plan_destroy_internal)(ego->cld);
|
|
}
|
|
|
|
static void print(const plan *ego_, printer *p)
|
|
{
|
|
const P *ego = (const P *) ego_;
|
|
p->print(p, "(%se-r2hc-%D%v%(%p%))",
|
|
X(rdft_kind_str)(ego->kind), ego->n, ego->vl, ego->cld);
|
|
}
|
|
|
|
static int applicable0(const solver *ego_, const problem *p_)
|
|
{
|
|
const problem_rdft *p = (const problem_rdft *) p_;
|
|
UNUSED(ego_);
|
|
|
|
return (1
|
|
&& p->sz->rnk == 1
|
|
&& p->vecsz->rnk <= 1
|
|
&& (p->kind[0] == REDFT01 || p->kind[0] == REDFT10
|
|
|| p->kind[0] == RODFT01 || p->kind[0] == RODFT10)
|
|
);
|
|
}
|
|
|
|
static int applicable(const solver *ego, const problem *p, const planner *plnr)
|
|
{
|
|
return (!NO_SLOWP(plnr) && applicable0(ego, p));
|
|
}
|
|
|
|
static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr)
|
|
{
|
|
P *pln;
|
|
const problem_rdft *p;
|
|
plan *cld;
|
|
R *buf;
|
|
INT n;
|
|
opcnt ops;
|
|
|
|
static const plan_adt padt = {
|
|
X(rdft_solve), awake, print, destroy
|
|
};
|
|
|
|
if (!applicable(ego_, p_, plnr))
|
|
return (plan *)0;
|
|
|
|
p = (const problem_rdft *) p_;
|
|
|
|
n = p->sz->dims[0].n;
|
|
buf = (R *) MALLOC(sizeof(R) * n, BUFFERS);
|
|
|
|
cld = X(mkplan_d)(plnr, X(mkproblem_rdft_1_d)(X(mktensor_1d)(n, 1, 1),
|
|
X(mktensor_0d)(),
|
|
buf, buf, R2HC));
|
|
X(ifree)(buf);
|
|
if (!cld)
|
|
return (plan *)0;
|
|
|
|
switch (p->kind[0]) {
|
|
case REDFT01: pln = MKPLAN_RDFT(P, &padt, apply_re01); break;
|
|
case REDFT10: pln = MKPLAN_RDFT(P, &padt, apply_re10); break;
|
|
case RODFT01: pln = MKPLAN_RDFT(P, &padt, apply_ro01); break;
|
|
case RODFT10: pln = MKPLAN_RDFT(P, &padt, apply_ro10); break;
|
|
default: A(0); return (plan*)0;
|
|
}
|
|
|
|
pln->n = n;
|
|
pln->is = p->sz->dims[0].is;
|
|
pln->os = p->sz->dims[0].os;
|
|
pln->cld = cld;
|
|
pln->td = 0;
|
|
pln->kind = p->kind[0];
|
|
|
|
X(tensor_tornk1)(p->vecsz, &pln->vl, &pln->ivs, &pln->ovs);
|
|
|
|
X(ops_zero)(&ops);
|
|
ops.other = 4 + (n-1)/2 * 10 + (1 - n % 2) * 5;
|
|
if (p->kind[0] == REDFT01 || p->kind[0] == RODFT01) {
|
|
ops.add = (n-1)/2 * 6;
|
|
ops.mul = (n-1)/2 * 4 + (1 - n % 2) * 2;
|
|
}
|
|
else { /* 10 transforms */
|
|
ops.add = (n-1)/2 * 2;
|
|
ops.mul = 1 + (n-1)/2 * 6 + (1 - n % 2) * 2;
|
|
}
|
|
|
|
X(ops_zero)(&pln->super.super.ops);
|
|
X(ops_madd2)(pln->vl, &ops, &pln->super.super.ops);
|
|
X(ops_madd2)(pln->vl, &cld->ops, &pln->super.super.ops);
|
|
|
|
return &(pln->super.super);
|
|
}
|
|
|
|
/* constructor */
|
|
static solver *mksolver(void)
|
|
{
|
|
static const solver_adt sadt = { PROBLEM_RDFT, mkplan, 0 };
|
|
S *slv = MKSOLVER(S, &sadt);
|
|
return &(slv->super);
|
|
}
|
|
|
|
void X(reodft010e_r2hc_register)(planner *p)
|
|
{
|
|
REGISTER_SOLVER(p, mksolver());
|
|
}
|