mirror of
https://github.com/tildearrow/furnace.git
synced 2024-12-02 17:27:25 +00:00
54e93db207
not reliable yet
220 lines
6.9 KiB
C
220 lines
6.9 KiB
C
/*
|
|
* Copyright (c) 2003, 2007-14 Matteo Frigo
|
|
* Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
|
*
|
|
*/
|
|
|
|
/* This file was automatically generated --- DO NOT EDIT */
|
|
/* Generated on Tue Sep 14 10:45:28 EDT 2021 */
|
|
|
|
#include "dft/codelet-dft.h"
|
|
|
|
#if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
|
|
|
|
/* Generated by: ../../../genfft/gen_twiddle_c.native -fma -simd -compact -variables 4 -pipeline-latency 8 -n 8 -name t1fv_8 -include dft/simd/t1f.h */
|
|
|
|
/*
|
|
* This function contains 33 FP additions, 24 FP multiplications,
|
|
* (or, 23 additions, 14 multiplications, 10 fused multiply/add),
|
|
* 24 stack variables, 1 constants, and 16 memory accesses
|
|
*/
|
|
#include "dft/simd/t1f.h"
|
|
|
|
static void t1fv_8(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
|
|
{
|
|
DVK(KP707106781, +0.707106781186547524400844362104849039284835938);
|
|
{
|
|
INT m;
|
|
R *x;
|
|
x = ri;
|
|
for (m = mb, W = W + (mb * ((TWVL / VL) * 14)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 14), MAKE_VOLATILE_STRIDE(8, rs)) {
|
|
V T4, Tq, Tl, Tr, T9, Tt, Te, Tu, T1, T3, T2;
|
|
T1 = LD(&(x[0]), ms, &(x[0]));
|
|
T2 = LD(&(x[WS(rs, 4)]), ms, &(x[0]));
|
|
T3 = BYTWJ(&(W[TWVL * 6]), T2);
|
|
T4 = VSUB(T1, T3);
|
|
Tq = VADD(T1, T3);
|
|
{
|
|
V Ti, Tk, Th, Tj;
|
|
Th = LD(&(x[WS(rs, 2)]), ms, &(x[0]));
|
|
Ti = BYTWJ(&(W[TWVL * 2]), Th);
|
|
Tj = LD(&(x[WS(rs, 6)]), ms, &(x[0]));
|
|
Tk = BYTWJ(&(W[TWVL * 10]), Tj);
|
|
Tl = VSUB(Ti, Tk);
|
|
Tr = VADD(Ti, Tk);
|
|
}
|
|
{
|
|
V T6, T8, T5, T7;
|
|
T5 = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)]));
|
|
T6 = BYTWJ(&(W[0]), T5);
|
|
T7 = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)]));
|
|
T8 = BYTWJ(&(W[TWVL * 8]), T7);
|
|
T9 = VSUB(T6, T8);
|
|
Tt = VADD(T6, T8);
|
|
}
|
|
{
|
|
V Tb, Td, Ta, Tc;
|
|
Ta = LD(&(x[WS(rs, 7)]), ms, &(x[WS(rs, 1)]));
|
|
Tb = BYTWJ(&(W[TWVL * 12]), Ta);
|
|
Tc = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)]));
|
|
Td = BYTWJ(&(W[TWVL * 4]), Tc);
|
|
Te = VSUB(Tb, Td);
|
|
Tu = VADD(Tb, Td);
|
|
}
|
|
{
|
|
V Ts, Tv, Tw, Tx;
|
|
Ts = VADD(Tq, Tr);
|
|
Tv = VADD(Tt, Tu);
|
|
ST(&(x[WS(rs, 4)]), VSUB(Ts, Tv), ms, &(x[0]));
|
|
ST(&(x[0]), VADD(Ts, Tv), ms, &(x[0]));
|
|
Tw = VSUB(Tq, Tr);
|
|
Tx = VSUB(Tu, Tt);
|
|
ST(&(x[WS(rs, 6)]), VFNMSI(Tx, Tw), ms, &(x[0]));
|
|
ST(&(x[WS(rs, 2)]), VFMAI(Tx, Tw), ms, &(x[0]));
|
|
{
|
|
V Tg, To, Tn, Tp, Tf, Tm;
|
|
Tf = VADD(T9, Te);
|
|
Tg = VFMA(LDK(KP707106781), Tf, T4);
|
|
To = VFNMS(LDK(KP707106781), Tf, T4);
|
|
Tm = VSUB(Te, T9);
|
|
Tn = VFNMS(LDK(KP707106781), Tm, Tl);
|
|
Tp = VFMA(LDK(KP707106781), Tm, Tl);
|
|
ST(&(x[WS(rs, 1)]), VFNMSI(Tn, Tg), ms, &(x[WS(rs, 1)]));
|
|
ST(&(x[WS(rs, 3)]), VFMAI(Tp, To), ms, &(x[WS(rs, 1)]));
|
|
ST(&(x[WS(rs, 7)]), VFMAI(Tn, Tg), ms, &(x[WS(rs, 1)]));
|
|
ST(&(x[WS(rs, 5)]), VFNMSI(Tp, To), ms, &(x[WS(rs, 1)]));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
VLEAVE();
|
|
}
|
|
|
|
static const tw_instr twinstr[] = {
|
|
VTW(0, 1),
|
|
VTW(0, 2),
|
|
VTW(0, 3),
|
|
VTW(0, 4),
|
|
VTW(0, 5),
|
|
VTW(0, 6),
|
|
VTW(0, 7),
|
|
{ TW_NEXT, VL, 0 }
|
|
};
|
|
|
|
static const ct_desc desc = { 8, XSIMD_STRING("t1fv_8"), twinstr, &GENUS, { 23, 14, 10, 0 }, 0, 0, 0 };
|
|
|
|
void XSIMD(codelet_t1fv_8) (planner *p) {
|
|
X(kdft_dit_register) (p, t1fv_8, &desc);
|
|
}
|
|
#else
|
|
|
|
/* Generated by: ../../../genfft/gen_twiddle_c.native -simd -compact -variables 4 -pipeline-latency 8 -n 8 -name t1fv_8 -include dft/simd/t1f.h */
|
|
|
|
/*
|
|
* This function contains 33 FP additions, 16 FP multiplications,
|
|
* (or, 33 additions, 16 multiplications, 0 fused multiply/add),
|
|
* 24 stack variables, 1 constants, and 16 memory accesses
|
|
*/
|
|
#include "dft/simd/t1f.h"
|
|
|
|
static void t1fv_8(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
|
|
{
|
|
DVK(KP707106781, +0.707106781186547524400844362104849039284835938);
|
|
{
|
|
INT m;
|
|
R *x;
|
|
x = ri;
|
|
for (m = mb, W = W + (mb * ((TWVL / VL) * 14)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 14), MAKE_VOLATILE_STRIDE(8, rs)) {
|
|
V T4, Tq, Tm, Tr, T9, Tt, Te, Tu, T1, T3, T2;
|
|
T1 = LD(&(x[0]), ms, &(x[0]));
|
|
T2 = LD(&(x[WS(rs, 4)]), ms, &(x[0]));
|
|
T3 = BYTWJ(&(W[TWVL * 6]), T2);
|
|
T4 = VSUB(T1, T3);
|
|
Tq = VADD(T1, T3);
|
|
{
|
|
V Tj, Tl, Ti, Tk;
|
|
Ti = LD(&(x[WS(rs, 2)]), ms, &(x[0]));
|
|
Tj = BYTWJ(&(W[TWVL * 2]), Ti);
|
|
Tk = LD(&(x[WS(rs, 6)]), ms, &(x[0]));
|
|
Tl = BYTWJ(&(W[TWVL * 10]), Tk);
|
|
Tm = VSUB(Tj, Tl);
|
|
Tr = VADD(Tj, Tl);
|
|
}
|
|
{
|
|
V T6, T8, T5, T7;
|
|
T5 = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)]));
|
|
T6 = BYTWJ(&(W[0]), T5);
|
|
T7 = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)]));
|
|
T8 = BYTWJ(&(W[TWVL * 8]), T7);
|
|
T9 = VSUB(T6, T8);
|
|
Tt = VADD(T6, T8);
|
|
}
|
|
{
|
|
V Tb, Td, Ta, Tc;
|
|
Ta = LD(&(x[WS(rs, 7)]), ms, &(x[WS(rs, 1)]));
|
|
Tb = BYTWJ(&(W[TWVL * 12]), Ta);
|
|
Tc = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)]));
|
|
Td = BYTWJ(&(W[TWVL * 4]), Tc);
|
|
Te = VSUB(Tb, Td);
|
|
Tu = VADD(Tb, Td);
|
|
}
|
|
{
|
|
V Ts, Tv, Tw, Tx;
|
|
Ts = VADD(Tq, Tr);
|
|
Tv = VADD(Tt, Tu);
|
|
ST(&(x[WS(rs, 4)]), VSUB(Ts, Tv), ms, &(x[0]));
|
|
ST(&(x[0]), VADD(Ts, Tv), ms, &(x[0]));
|
|
Tw = VSUB(Tq, Tr);
|
|
Tx = VBYI(VSUB(Tu, Tt));
|
|
ST(&(x[WS(rs, 6)]), VSUB(Tw, Tx), ms, &(x[0]));
|
|
ST(&(x[WS(rs, 2)]), VADD(Tw, Tx), ms, &(x[0]));
|
|
{
|
|
V Tg, To, Tn, Tp, Tf, Th;
|
|
Tf = VMUL(LDK(KP707106781), VADD(T9, Te));
|
|
Tg = VADD(T4, Tf);
|
|
To = VSUB(T4, Tf);
|
|
Th = VMUL(LDK(KP707106781), VSUB(Te, T9));
|
|
Tn = VBYI(VSUB(Th, Tm));
|
|
Tp = VBYI(VADD(Tm, Th));
|
|
ST(&(x[WS(rs, 7)]), VSUB(Tg, Tn), ms, &(x[WS(rs, 1)]));
|
|
ST(&(x[WS(rs, 3)]), VADD(To, Tp), ms, &(x[WS(rs, 1)]));
|
|
ST(&(x[WS(rs, 1)]), VADD(Tg, Tn), ms, &(x[WS(rs, 1)]));
|
|
ST(&(x[WS(rs, 5)]), VSUB(To, Tp), ms, &(x[WS(rs, 1)]));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
VLEAVE();
|
|
}
|
|
|
|
static const tw_instr twinstr[] = {
|
|
VTW(0, 1),
|
|
VTW(0, 2),
|
|
VTW(0, 3),
|
|
VTW(0, 4),
|
|
VTW(0, 5),
|
|
VTW(0, 6),
|
|
VTW(0, 7),
|
|
{ TW_NEXT, VL, 0 }
|
|
};
|
|
|
|
static const ct_desc desc = { 8, XSIMD_STRING("t1fv_8"), twinstr, &GENUS, { 33, 16, 0, 0 }, 0, 0, 0 };
|
|
|
|
void XSIMD(codelet_t1fv_8) (planner *p) {
|
|
X(kdft_dit_register) (p, t1fv_8, &desc);
|
|
}
|
|
#endif
|