furnace/extern/fftw/kernel/cpy2d.c
2022-05-31 03:24:29 -05:00

207 lines
5.7 KiB
C

/*
* Copyright (c) 2003, 2007-14 Matteo Frigo
* Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
*/
/* out of place 2D copy routines */
#include "kernel/ifftw.h"
#if defined(__x86_64__) || defined(_M_X64) || defined(_M_AMD64)
# ifdef HAVE_XMMINTRIN_H
# include <xmmintrin.h>
# define WIDE_TYPE __m128
# endif
#endif
#ifndef WIDE_TYPE
/* fall back to double, which means that WIDE_TYPE will be unused */
# define WIDE_TYPE double
#endif
void X(cpy2d)(R *I, R *O,
INT n0, INT is0, INT os0,
INT n1, INT is1, INT os1,
INT vl)
{
INT i0, i1, v;
switch (vl) {
case 1:
for (i1 = 0; i1 < n1; ++i1)
for (i0 = 0; i0 < n0; ++i0) {
R x0 = I[i0 * is0 + i1 * is1];
O[i0 * os0 + i1 * os1] = x0;
}
break;
case 2:
if (1
&& (2 * sizeof(R) == sizeof(WIDE_TYPE))
&& (sizeof(WIDE_TYPE) > sizeof(double))
&& (((size_t)I) % sizeof(WIDE_TYPE) == 0)
&& (((size_t)O) % sizeof(WIDE_TYPE) == 0)
&& ((is0 & 1) == 0)
&& ((is1 & 1) == 0)
&& ((os0 & 1) == 0)
&& ((os1 & 1) == 0)) {
/* copy R[2] as WIDE_TYPE if WIDE_TYPE is large
enough to hold R[2], and if the input is
properly aligned. This is a win when R==double
and WIDE_TYPE is 128 bits. */
for (i1 = 0; i1 < n1; ++i1)
for (i0 = 0; i0 < n0; ++i0) {
*(WIDE_TYPE *)&O[i0 * os0 + i1 * os1] =
*(WIDE_TYPE *)&I[i0 * is0 + i1 * is1];
}
} else if (1
&& (2 * sizeof(R) == sizeof(double))
&& (((size_t)I) % sizeof(double) == 0)
&& (((size_t)O) % sizeof(double) == 0)
&& ((is0 & 1) == 0)
&& ((is1 & 1) == 0)
&& ((os0 & 1) == 0)
&& ((os1 & 1) == 0)) {
/* copy R[2] as double if double is large enough to
hold R[2], and if the input is properly aligned.
This case applies when R==float */
for (i1 = 0; i1 < n1; ++i1)
for (i0 = 0; i0 < n0; ++i0) {
*(double *)&O[i0 * os0 + i1 * os1] =
*(double *)&I[i0 * is0 + i1 * is1];
}
} else {
for (i1 = 0; i1 < n1; ++i1)
for (i0 = 0; i0 < n0; ++i0) {
R x0 = I[i0 * is0 + i1 * is1];
R x1 = I[i0 * is0 + i1 * is1 + 1];
O[i0 * os0 + i1 * os1] = x0;
O[i0 * os0 + i1 * os1 + 1] = x1;
}
}
break;
default:
for (i1 = 0; i1 < n1; ++i1)
for (i0 = 0; i0 < n0; ++i0)
for (v = 0; v < vl; ++v) {
R x0 = I[i0 * is0 + i1 * is1 + v];
O[i0 * os0 + i1 * os1 + v] = x0;
}
break;
}
}
/* like cpy2d, but read input contiguously if possible */
void X(cpy2d_ci)(R *I, R *O,
INT n0, INT is0, INT os0,
INT n1, INT is1, INT os1,
INT vl)
{
if (IABS(is0) < IABS(is1)) /* inner loop is for n0 */
X(cpy2d) (I, O, n0, is0, os0, n1, is1, os1, vl);
else
X(cpy2d) (I, O, n1, is1, os1, n0, is0, os0, vl);
}
/* like cpy2d, but write output contiguously if possible */
void X(cpy2d_co)(R *I, R *O,
INT n0, INT is0, INT os0,
INT n1, INT is1, INT os1,
INT vl)
{
if (IABS(os0) < IABS(os1)) /* inner loop is for n0 */
X(cpy2d) (I, O, n0, is0, os0, n1, is1, os1, vl);
else
X(cpy2d) (I, O, n1, is1, os1, n0, is0, os0, vl);
}
/* tiled copy routines */
struct cpy2d_closure {
R *I, *O;
INT is0, os0, is1, os1, vl;
R *buf;
};
static void dotile(INT n0l, INT n0u, INT n1l, INT n1u, void *args)
{
struct cpy2d_closure *k = (struct cpy2d_closure *)args;
X(cpy2d)(k->I + n0l * k->is0 + n1l * k->is1,
k->O + n0l * k->os0 + n1l * k->os1,
n0u - n0l, k->is0, k->os0,
n1u - n1l, k->is1, k->os1,
k->vl);
}
static void dotile_buf(INT n0l, INT n0u, INT n1l, INT n1u, void *args)
{
struct cpy2d_closure *k = (struct cpy2d_closure *)args;
/* copy from I to buf */
X(cpy2d_ci)(k->I + n0l * k->is0 + n1l * k->is1,
k->buf,
n0u - n0l, k->is0, k->vl,
n1u - n1l, k->is1, k->vl * (n0u - n0l),
k->vl);
/* copy from buf to O */
X(cpy2d_co)(k->buf,
k->O + n0l * k->os0 + n1l * k->os1,
n0u - n0l, k->vl, k->os0,
n1u - n1l, k->vl * (n0u - n0l), k->os1,
k->vl);
}
void X(cpy2d_tiled)(R *I, R *O,
INT n0, INT is0, INT os0,
INT n1, INT is1, INT os1, INT vl)
{
INT tilesz = X(compute_tilesz)(vl,
1 /* input array */
+ 1 /* ouput array */);
struct cpy2d_closure k;
k.I = I;
k.O = O;
k.is0 = is0;
k.os0 = os0;
k.is1 = is1;
k.os1 = os1;
k.vl = vl;
k.buf = 0; /* unused */
X(tile2d)(0, n0, 0, n1, tilesz, dotile, &k);
}
void X(cpy2d_tiledbuf)(R *I, R *O,
INT n0, INT is0, INT os0,
INT n1, INT is1, INT os1, INT vl)
{
R buf[CACHESIZE / (2 * sizeof(R))];
/* input and buffer in cache, or
output and buffer in cache */
INT tilesz = X(compute_tilesz)(vl, 2);
struct cpy2d_closure k;
k.I = I;
k.O = O;
k.is0 = is0;
k.os0 = os0;
k.is1 = is1;
k.os1 = os1;
k.vl = vl;
k.buf = buf;
A(tilesz * tilesz * vl * sizeof(R) <= sizeof(buf));
X(tile2d)(0, n0, 0, n1, tilesz, dotile_buf, &k);
}