mirror of
https://github.com/tildearrow/furnace.git
synced 2024-11-24 13:35:11 +00:00
54e93db207
not reliable yet
264 lines
7.5 KiB
C
264 lines
7.5 KiB
C
/*
|
|
* Copyright (c) 2003, 2007-14 Matteo Frigo
|
|
* Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
|
*
|
|
*/
|
|
|
|
/* This file was automatically generated --- DO NOT EDIT */
|
|
/* Generated on Tue Sep 14 10:44:37 EDT 2021 */
|
|
|
|
#include "dft/codelet-dft.h"
|
|
|
|
#if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
|
|
|
|
/* Generated by: ../../../genfft/gen_twiddle.native -fma -compact -variables 4 -pipeline-latency 4 -twiddle-log3 -precompute-twiddles -n 5 -name t2_5 -include dft/scalar/t.h */
|
|
|
|
/*
|
|
* This function contains 44 FP additions, 40 FP multiplications,
|
|
* (or, 14 additions, 10 multiplications, 30 fused multiply/add),
|
|
* 38 stack variables, 4 constants, and 20 memory accesses
|
|
*/
|
|
#include "dft/scalar/t.h"
|
|
|
|
static void t2_5(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
|
|
{
|
|
DK(KP951056516, +0.951056516295153572116439333379382143405698634);
|
|
DK(KP559016994, +0.559016994374947424102293417182819058860154590);
|
|
DK(KP618033988, +0.618033988749894848204586834365638117720309180);
|
|
DK(KP250000000, +0.250000000000000000000000000000000000000000000);
|
|
{
|
|
INT m;
|
|
for (m = mb, W = W + (mb * 4); m < me; m = m + 1, ri = ri + ms, ii = ii + ms, W = W + 4, MAKE_VOLATILE_STRIDE(10, rs)) {
|
|
E T2, Ta, T8, T5, Tb, Tm, Tf, Tj, T9, Te;
|
|
T2 = W[0];
|
|
Ta = W[3];
|
|
T8 = W[2];
|
|
T9 = T2 * T8;
|
|
Te = T2 * Ta;
|
|
T5 = W[1];
|
|
Tb = FNMS(T5, Ta, T9);
|
|
Tm = FNMS(T5, T8, Te);
|
|
Tf = FMA(T5, T8, Te);
|
|
Tj = FMA(T5, Ta, T9);
|
|
{
|
|
E T1, TO, T7, Th, Ti, Tz, TB, TL, To, Ts, Tt, TE, TG, TM;
|
|
T1 = ri[0];
|
|
TO = ii[0];
|
|
{
|
|
E T3, T4, T6, Ty, Tc, Td, Tg, TA;
|
|
T3 = ri[WS(rs, 1)];
|
|
T4 = T2 * T3;
|
|
T6 = ii[WS(rs, 1)];
|
|
Ty = T2 * T6;
|
|
Tc = ri[WS(rs, 4)];
|
|
Td = Tb * Tc;
|
|
Tg = ii[WS(rs, 4)];
|
|
TA = Tb * Tg;
|
|
T7 = FMA(T5, T6, T4);
|
|
Th = FMA(Tf, Tg, Td);
|
|
Ti = T7 + Th;
|
|
Tz = FNMS(T5, T3, Ty);
|
|
TB = FNMS(Tf, Tc, TA);
|
|
TL = Tz + TB;
|
|
}
|
|
{
|
|
E Tk, Tl, Tn, TD, Tp, Tq, Tr, TF;
|
|
Tk = ri[WS(rs, 2)];
|
|
Tl = Tj * Tk;
|
|
Tn = ii[WS(rs, 2)];
|
|
TD = Tj * Tn;
|
|
Tp = ri[WS(rs, 3)];
|
|
Tq = T8 * Tp;
|
|
Tr = ii[WS(rs, 3)];
|
|
TF = T8 * Tr;
|
|
To = FMA(Tm, Tn, Tl);
|
|
Ts = FMA(Ta, Tr, Tq);
|
|
Tt = To + Ts;
|
|
TE = FNMS(Tm, Tk, TD);
|
|
TG = FNMS(Ta, Tp, TF);
|
|
TM = TE + TG;
|
|
}
|
|
{
|
|
E Tw, Tu, Tv, TI, TK, TC, TH, TJ, Tx;
|
|
Tw = Ti - Tt;
|
|
Tu = Ti + Tt;
|
|
Tv = FNMS(KP250000000, Tu, T1);
|
|
TC = Tz - TB;
|
|
TH = TE - TG;
|
|
TI = FMA(KP618033988, TH, TC);
|
|
TK = FNMS(KP618033988, TC, TH);
|
|
ri[0] = T1 + Tu;
|
|
TJ = FNMS(KP559016994, Tw, Tv);
|
|
ri[WS(rs, 2)] = FNMS(KP951056516, TK, TJ);
|
|
ri[WS(rs, 3)] = FMA(KP951056516, TK, TJ);
|
|
Tx = FMA(KP559016994, Tw, Tv);
|
|
ri[WS(rs, 4)] = FNMS(KP951056516, TI, Tx);
|
|
ri[WS(rs, 1)] = FMA(KP951056516, TI, Tx);
|
|
}
|
|
{
|
|
E TQ, TN, TP, TU, TW, TS, TT, TV, TR;
|
|
TQ = TL - TM;
|
|
TN = TL + TM;
|
|
TP = FNMS(KP250000000, TN, TO);
|
|
TS = T7 - Th;
|
|
TT = To - Ts;
|
|
TU = FMA(KP618033988, TT, TS);
|
|
TW = FNMS(KP618033988, TS, TT);
|
|
ii[0] = TN + TO;
|
|
TV = FNMS(KP559016994, TQ, TP);
|
|
ii[WS(rs, 2)] = FMA(KP951056516, TW, TV);
|
|
ii[WS(rs, 3)] = FNMS(KP951056516, TW, TV);
|
|
TR = FMA(KP559016994, TQ, TP);
|
|
ii[WS(rs, 1)] = FNMS(KP951056516, TU, TR);
|
|
ii[WS(rs, 4)] = FMA(KP951056516, TU, TR);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static const tw_instr twinstr[] = {
|
|
{ TW_CEXP, 0, 1 },
|
|
{ TW_CEXP, 0, 3 },
|
|
{ TW_NEXT, 1, 0 }
|
|
};
|
|
|
|
static const ct_desc desc = { 5, "t2_5", twinstr, &GENUS, { 14, 10, 30, 0 }, 0, 0, 0 };
|
|
|
|
void X(codelet_t2_5) (planner *p) {
|
|
X(kdft_dit_register) (p, t2_5, &desc);
|
|
}
|
|
#else
|
|
|
|
/* Generated by: ../../../genfft/gen_twiddle.native -compact -variables 4 -pipeline-latency 4 -twiddle-log3 -precompute-twiddles -n 5 -name t2_5 -include dft/scalar/t.h */
|
|
|
|
/*
|
|
* This function contains 44 FP additions, 32 FP multiplications,
|
|
* (or, 30 additions, 18 multiplications, 14 fused multiply/add),
|
|
* 37 stack variables, 4 constants, and 20 memory accesses
|
|
*/
|
|
#include "dft/scalar/t.h"
|
|
|
|
static void t2_5(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
|
|
{
|
|
DK(KP250000000, +0.250000000000000000000000000000000000000000000);
|
|
DK(KP559016994, +0.559016994374947424102293417182819058860154590);
|
|
DK(KP587785252, +0.587785252292473129168705954639072768597652438);
|
|
DK(KP951056516, +0.951056516295153572116439333379382143405698634);
|
|
{
|
|
INT m;
|
|
for (m = mb, W = W + (mb * 4); m < me; m = m + 1, ri = ri + ms, ii = ii + ms, W = W + 4, MAKE_VOLATILE_STRIDE(10, rs)) {
|
|
E T2, T4, T7, T9, Tb, Tl, Tf, Tj;
|
|
{
|
|
E T8, Te, Ta, Td;
|
|
T2 = W[0];
|
|
T4 = W[1];
|
|
T7 = W[2];
|
|
T9 = W[3];
|
|
T8 = T2 * T7;
|
|
Te = T4 * T7;
|
|
Ta = T4 * T9;
|
|
Td = T2 * T9;
|
|
Tb = T8 - Ta;
|
|
Tl = Td - Te;
|
|
Tf = Td + Te;
|
|
Tj = T8 + Ta;
|
|
}
|
|
{
|
|
E T1, TI, Ty, TB, TN, TM, TF, TG, TH, Ti, Tr, Ts;
|
|
T1 = ri[0];
|
|
TI = ii[0];
|
|
{
|
|
E T6, Tw, Tq, TA, Th, Tx, Tn, Tz;
|
|
{
|
|
E T3, T5, To, Tp;
|
|
T3 = ri[WS(rs, 1)];
|
|
T5 = ii[WS(rs, 1)];
|
|
T6 = FMA(T2, T3, T4 * T5);
|
|
Tw = FNMS(T4, T3, T2 * T5);
|
|
To = ri[WS(rs, 3)];
|
|
Tp = ii[WS(rs, 3)];
|
|
Tq = FMA(T7, To, T9 * Tp);
|
|
TA = FNMS(T9, To, T7 * Tp);
|
|
}
|
|
{
|
|
E Tc, Tg, Tk, Tm;
|
|
Tc = ri[WS(rs, 4)];
|
|
Tg = ii[WS(rs, 4)];
|
|
Th = FMA(Tb, Tc, Tf * Tg);
|
|
Tx = FNMS(Tf, Tc, Tb * Tg);
|
|
Tk = ri[WS(rs, 2)];
|
|
Tm = ii[WS(rs, 2)];
|
|
Tn = FMA(Tj, Tk, Tl * Tm);
|
|
Tz = FNMS(Tl, Tk, Tj * Tm);
|
|
}
|
|
Ty = Tw - Tx;
|
|
TB = Tz - TA;
|
|
TN = Tn - Tq;
|
|
TM = T6 - Th;
|
|
TF = Tw + Tx;
|
|
TG = Tz + TA;
|
|
TH = TF + TG;
|
|
Ti = T6 + Th;
|
|
Tr = Tn + Tq;
|
|
Ts = Ti + Tr;
|
|
}
|
|
ri[0] = T1 + Ts;
|
|
ii[0] = TH + TI;
|
|
{
|
|
E TC, TE, Tv, TD, Tt, Tu;
|
|
TC = FMA(KP951056516, Ty, KP587785252 * TB);
|
|
TE = FNMS(KP587785252, Ty, KP951056516 * TB);
|
|
Tt = KP559016994 * (Ti - Tr);
|
|
Tu = FNMS(KP250000000, Ts, T1);
|
|
Tv = Tt + Tu;
|
|
TD = Tu - Tt;
|
|
ri[WS(rs, 4)] = Tv - TC;
|
|
ri[WS(rs, 3)] = TD + TE;
|
|
ri[WS(rs, 1)] = Tv + TC;
|
|
ri[WS(rs, 2)] = TD - TE;
|
|
}
|
|
{
|
|
E TO, TP, TL, TQ, TJ, TK;
|
|
TO = FMA(KP951056516, TM, KP587785252 * TN);
|
|
TP = FNMS(KP587785252, TM, KP951056516 * TN);
|
|
TJ = KP559016994 * (TF - TG);
|
|
TK = FNMS(KP250000000, TH, TI);
|
|
TL = TJ + TK;
|
|
TQ = TK - TJ;
|
|
ii[WS(rs, 1)] = TL - TO;
|
|
ii[WS(rs, 3)] = TQ - TP;
|
|
ii[WS(rs, 4)] = TO + TL;
|
|
ii[WS(rs, 2)] = TP + TQ;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static const tw_instr twinstr[] = {
|
|
{ TW_CEXP, 0, 1 },
|
|
{ TW_CEXP, 0, 3 },
|
|
{ TW_NEXT, 1, 0 }
|
|
};
|
|
|
|
static const ct_desc desc = { 5, "t2_5", twinstr, &GENUS, { 30, 18, 14, 0 }, 0, 0, 0 };
|
|
|
|
void X(codelet_t2_5) (planner *p) {
|
|
X(kdft_dit_register) (p, t2_5, &desc);
|
|
}
|
|
#endif
|