furnace/extern/fftw/rdft/scalar/r2r/e10_8.c
2022-05-31 03:24:29 -05:00

188 lines
6.3 KiB
C

/*
* Copyright (c) 2003, 2007-14 Matteo Frigo
* Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
*/
/* This file was automatically generated --- DO NOT EDIT */
/* Generated on Tue Sep 14 10:47:21 EDT 2021 */
#include "rdft/codelet-rdft.h"
#if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
/* Generated by: ../../../genfft/gen_r2r.native -fma -compact -variables 4 -pipeline-latency 4 -redft10 -n 8 -name e10_8 -include rdft/scalar/r2r.h */
/*
* This function contains 26 FP additions, 18 FP multiplications,
* (or, 16 additions, 8 multiplications, 10 fused multiply/add),
* 28 stack variables, 9 constants, and 16 memory accesses
*/
#include "rdft/scalar/r2r.h"
static void e10_8(const R *I, R *O, stride is, stride os, INT v, INT ivs, INT ovs)
{
DK(KP414213562, +0.414213562373095048801688724209698078569671875);
DK(KP1_847759065, +1.847759065022573512256366378793576573644833252);
DK(KP198912367, +0.198912367379658006911597622644676228597850501);
DK(KP1_961570560, +1.961570560806460898252364472268478073947867462);
DK(KP2_000000000, +2.000000000000000000000000000000000000000000000);
DK(KP1_414213562, +1.414213562373095048801688724209698078569671875);
DK(KP668178637, +0.668178637919298919997757686523080761552472251);
DK(KP1_662939224, +1.662939224605090474157576755235811513477121624);
DK(KP707106781, +0.707106781186547524400844362104849039284835938);
{
INT i;
for (i = v; i > 0; i = i - 1, I = I + ivs, O = O + ovs, MAKE_VOLATILE_STRIDE(16, is), MAKE_VOLATILE_STRIDE(16, os)) {
E T3, Tj, Te, Tk, Ta, Tn, Tf, Tm;
{
E T1, T2, Tc, Td;
T1 = I[0];
T2 = I[WS(is, 7)];
T3 = T1 - T2;
Tj = T1 + T2;
Tc = I[WS(is, 4)];
Td = I[WS(is, 3)];
Te = Tc - Td;
Tk = Tc + Td;
{
E T4, T5, T6, T7, T8, T9;
T4 = I[WS(is, 2)];
T5 = I[WS(is, 5)];
T6 = T4 - T5;
T7 = I[WS(is, 1)];
T8 = I[WS(is, 6)];
T9 = T7 - T8;
Ta = T6 + T9;
Tn = T7 + T8;
Tf = T6 - T9;
Tm = T4 + T5;
}
}
{
E Tb, Tg, Tp, Tq;
Tb = FNMS(KP707106781, Ta, T3);
Tg = FNMS(KP707106781, Tf, Te);
O[WS(os, 3)] = KP1_662939224 * (FMA(KP668178637, Tg, Tb));
O[WS(os, 5)] = -(KP1_662939224 * (FNMS(KP668178637, Tb, Tg)));
Tp = Tj + Tk;
Tq = Tm + Tn;
O[WS(os, 4)] = KP1_414213562 * (Tp - Tq);
O[0] = KP2_000000000 * (Tp + Tq);
}
{
E Th, Ti, Tl, To;
Th = FMA(KP707106781, Ta, T3);
Ti = FMA(KP707106781, Tf, Te);
O[WS(os, 1)] = KP1_961570560 * (FNMS(KP198912367, Ti, Th));
O[WS(os, 7)] = KP1_961570560 * (FMA(KP198912367, Th, Ti));
Tl = Tj - Tk;
To = Tm - Tn;
O[WS(os, 2)] = KP1_847759065 * (FNMS(KP414213562, To, Tl));
O[WS(os, 6)] = KP1_847759065 * (FMA(KP414213562, Tl, To));
}
}
}
}
static const kr2r_desc desc = { 8, "e10_8", { 16, 8, 10, 0 }, &GENUS, REDFT10 };
void X(codelet_e10_8) (planner *p) { X(kr2r_register) (p, e10_8, &desc);
}
#else
/* Generated by: ../../../genfft/gen_r2r.native -compact -variables 4 -pipeline-latency 4 -redft10 -n 8 -name e10_8 -include rdft/scalar/r2r.h */
/*
* This function contains 26 FP additions, 16 FP multiplications,
* (or, 20 additions, 10 multiplications, 6 fused multiply/add),
* 28 stack variables, 9 constants, and 16 memory accesses
*/
#include "rdft/scalar/r2r.h"
static void e10_8(const R *I, R *O, stride is, stride os, INT v, INT ivs, INT ovs)
{
DK(KP765366864, +0.765366864730179543456919968060797733522689125);
DK(KP1_847759065, +1.847759065022573512256366378793576573644833252);
DK(KP390180644, +0.390180644032256535696569736954044481855383236);
DK(KP1_961570560, +1.961570560806460898252364472268478073947867462);
DK(KP2_000000000, +2.000000000000000000000000000000000000000000000);
DK(KP1_414213562, +1.414213562373095048801688724209698078569671875);
DK(KP1_111140466, +1.111140466039204449485661627897065748749874382);
DK(KP1_662939224, +1.662939224605090474157576755235811513477121624);
DK(KP707106781, +0.707106781186547524400844362104849039284835938);
{
INT i;
for (i = v; i > 0; i = i - 1, I = I + ivs, O = O + ovs, MAKE_VOLATILE_STRIDE(16, is), MAKE_VOLATILE_STRIDE(16, os)) {
E T3, Tj, Tf, Tk, Ta, Tn, Tc, Tm;
{
E T1, T2, Td, Te;
T1 = I[0];
T2 = I[WS(is, 7)];
T3 = T1 - T2;
Tj = T1 + T2;
Td = I[WS(is, 4)];
Te = I[WS(is, 3)];
Tf = Td - Te;
Tk = Td + Te;
{
E T4, T5, T6, T7, T8, T9;
T4 = I[WS(is, 2)];
T5 = I[WS(is, 5)];
T6 = T4 - T5;
T7 = I[WS(is, 1)];
T8 = I[WS(is, 6)];
T9 = T7 - T8;
Ta = KP707106781 * (T6 + T9);
Tn = T7 + T8;
Tc = KP707106781 * (T6 - T9);
Tm = T4 + T5;
}
}
{
E Tb, Tg, Tp, Tq;
Tb = T3 - Ta;
Tg = Tc - Tf;
O[WS(os, 3)] = FNMS(KP1_111140466, Tg, KP1_662939224 * Tb);
O[WS(os, 5)] = FMA(KP1_662939224, Tg, KP1_111140466 * Tb);
Tp = Tj + Tk;
Tq = Tm + Tn;
O[WS(os, 4)] = KP1_414213562 * (Tp - Tq);
O[0] = KP2_000000000 * (Tp + Tq);
}
{
E Th, Ti, Tl, To;
Th = T3 + Ta;
Ti = Tf + Tc;
O[WS(os, 1)] = FNMS(KP390180644, Ti, KP1_961570560 * Th);
O[WS(os, 7)] = FMA(KP1_961570560, Ti, KP390180644 * Th);
Tl = Tj - Tk;
To = Tm - Tn;
O[WS(os, 2)] = FNMS(KP765366864, To, KP1_847759065 * Tl);
O[WS(os, 6)] = FMA(KP765366864, Tl, KP1_847759065 * To);
}
}
}
}
static const kr2r_desc desc = { 8, "e10_8", { 20, 10, 6, 0 }, &GENUS, REDFT10 };
void X(codelet_e10_8) (planner *p) { X(kr2r_register) (p, e10_8, &desc);
}
#endif